Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = VEE virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 2348 KiB  
Communication
Replication of the Venezuelan Equine Encephalitis Vaccine from a Synthetic PCR Fragment
by Christine Mathew, Colin Tucker, Irina Tretyakova and Peter Pushko
Pharmaceutics 2024, 16(9), 1217; https://doi.org/10.3390/pharmaceutics16091217 - 17 Sep 2024
Viewed by 1459
Abstract
Background/Objectives: There is no approved human vaccine for Venezuelan equine encephalitis (VEE), a life-threatening disease caused by the VEE virus (VEEV). In previous studies, plasmid DNA encoding the full-length RNA genome of the VEE V4020 vaccine was used for the preparation of experimental [...] Read more.
Background/Objectives: There is no approved human vaccine for Venezuelan equine encephalitis (VEE), a life-threatening disease caused by the VEE virus (VEEV). In previous studies, plasmid DNA encoding the full-length RNA genome of the VEE V4020 vaccine was used for the preparation of experimental live virus VEE vaccines in the plasmid-transfected cell culture. Methods: Here, we used the high-fidelity polymerase chain reaction (PCR) to prepare synthetic, transcriptionally active PCR (TAP) fragments encoding the V4020 genome. Results: TAP fragment initiated the replication of the V4020 live virus vaccine in TAP fragment-transfected cells. A transfection of less than 1 ug of TAP fragment resulted in the replication of the V4020 vaccine virus in CHO cells. Conclusion: We conclude that not only plasmid DNA but also synthetic PCR-generated DNA fragments can be used for the manufacturing of live vaccines for VEEV and, potentially, other viruses. Full article
Show Figures

Figure 1

14 pages, 6882 KiB  
Article
Mapping Eastern (EEE) and Venezuelan Equine Encephalitides (VEE) among Equines Using Geographical Information Systems, Colombia, 2008–2019
by D. Katterine Bonilla-Aldana, Christian David Bonilla Carvajal, Emilly Moreno-Ramos, Joshuan J. Barboza and Alfonso J. Rodriguez-Morales
Viruses 2023, 15(3), 707; https://doi.org/10.3390/v15030707 - 8 Mar 2023
Cited by 3 | Viewed by 3061
Abstract
Introduction: Eastern equine encephalitis virus (EEEV) and Venezuelan equine encephalitis virus (VEEV) viruses are zoonotic pathogens affecting humans, particularly equines. These neuroarboviruses compromise the central nervous system and can be fatal in different hosts. Both have significantly influenced Colombia; however, few studies analyse [...] Read more.
Introduction: Eastern equine encephalitis virus (EEEV) and Venezuelan equine encephalitis virus (VEEV) viruses are zoonotic pathogens affecting humans, particularly equines. These neuroarboviruses compromise the central nervous system and can be fatal in different hosts. Both have significantly influenced Colombia; however, few studies analyse its behaviour, and none develop maps using geographic information systems to characterise it. Objective: To describe the temporal-spatial distribution of those viruses in Colombia between 2008 and 2019. Methods: Retrospective cross-sectional descriptive study, based on weekly reports by municipalities of the ICA, of the surveillance of both arboviruses in equines, in Colombia, from 2008 to 2019. The data were converted into databases in Microsoft Access 365®, and multiple epidemiological maps were generated with the Kosmo RC1®3.0 software coupled to shape files of all municipalities in the country. Results: In the study period, 96 cases of EEE and 70 of VEE were reported, with 58% of EEE cases occurring in 2016 and 20% of EEV cases in 2013. The most affected municipalities for EEE corresponded to the department of Casanare: Yopal (20), Aguazul (16), and Tauramena (10). In total, 40 municipalities in the country reported ≥1 case of EEE. Conclusions: The maps allow a quick appreciation of groups of neighbouring municipalities in different departments (1° political division) and regions of the country affected by those viruses, which helps consider the expansion of the disease associated with mobility and transport of equines between other municipalities, also including international borders, such as is the case with Venezuela. In that country, especially for EEV, municipalities in the department of Cesar are bordering and at risk for that arboviral infection. there is a high risk of equine encephalitis outbreaks, especially for VEE. This poses a risk also, for municipalities in the department of Cesar, bordering with Venezuela. Full article
(This article belongs to the Special Issue Chikungunya Virus and Emerging Alphaviruses)
Show Figures

Figure 1

23 pages, 6143 KiB  
Article
Controlling the Switch from Neurogenesis to Pluripotency during Marmoset Monkey Somatic Cell Reprogramming with Self-Replicating mRNAs and Small Molecules
by Stoyan Petkov, Ralf Dressel, Ignacio Rodriguez-Polo and Rüdiger Behr
Cells 2020, 9(11), 2422; https://doi.org/10.3390/cells9112422 - 5 Nov 2020
Cited by 11 | Viewed by 4156
Abstract
Induced pluripotent stem cells (iPSCs) hold enormous potential for the development of cell-based therapies; however, the safety and efficacy of potential iPSC-based treatments need to be verified in relevant animal disease models before their application in the clinic. Here, we report the derivation [...] Read more.
Induced pluripotent stem cells (iPSCs) hold enormous potential for the development of cell-based therapies; however, the safety and efficacy of potential iPSC-based treatments need to be verified in relevant animal disease models before their application in the clinic. Here, we report the derivation of iPSCs from common marmoset monkeys (Callithrix jacchus) using self-replicating mRNA vectors based on the Venezuelan equine encephalitis virus (VEE-mRNAs). By transfection of marmoset fibroblasts with VEE-mRNAs carrying the human OCT4, KLF4, SOX2, and c-MYC and culture in the presence of small molecule inhibitors CHIR99021 and SB431542, we first established intermediate primary colonies with neural progenitor-like properties. In the second reprogramming step, we converted these colonies into transgene-free pluripotent stem cells by further culturing them with customized marmoset iPSC medium in feeder-free conditions. Our experiments revealed a novel paradigm for flexible reprogramming of somatic cells, where primary colonies obtained by a single VEE-mRNA transfection can be directed either toward the neural lineage or further reprogrammed to pluripotency. These results (1) will further enhance the role of the common marmoset as animal disease model for preclinical testing of iPSC-based therapies and (2) establish an in vitro system to experimentally address developmental signal transduction pathways in primates. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Figure 1

18 pages, 2962 KiB  
Article
Optimized Approaches for the Induction of Putative Canine Induced Pluripotent Stem Cells from Old Fibroblasts Using Synthetic RNAs
by Mirae Kim, Seon-Ung Hwang, Junchul David Yoon, Yeon Woo Jeong, Eunhye Kim and Sang-Hwan Hyun
Animals 2020, 10(10), 1848; https://doi.org/10.3390/ani10101848 - 11 Oct 2020
Cited by 7 | Viewed by 4713
Abstract
Canine induced pluripotent stem cells (ciPSCs) can provide great potential for regenerative veterinary medicine. Several reports have described the generation of canine somatic cell-derived iPSCs; however, none have described the canine somatic cell reprogramming using a non-integrating and self-replicating RNA transfection method. The [...] Read more.
Canine induced pluripotent stem cells (ciPSCs) can provide great potential for regenerative veterinary medicine. Several reports have described the generation of canine somatic cell-derived iPSCs; however, none have described the canine somatic cell reprogramming using a non-integrating and self-replicating RNA transfection method. The purpose of this study was to investigate the optimal strategy using this approach and characterize the transition stage of ciPSCs. In this study, fibroblasts obtained from a 13-year-old dog were reprogrammed using a non-integrating Venezuelan equine encephalitis (VEE) RNA virus replicon, which has four reprogramming factors (collectively referred to as T7-VEE-OKS-iG and comprised of hOct4, hKlf4, hSox2, and hGlis1) and co-transfected with the T7-VEE-OKS-iG RNA and B18R mRNA for 4 h. One day after the final transfection, the cells were selected with puromycin (0.5 µg/mL) until day 10. After about 25 days, putative ciPSC colonies were identified showing TRA-1-60 expression and alkaline phosphatase activity. To determine the optimal culture conditions, the basic fibroblast growth factor in the culture medium was replaced with a modified medium supplemented with murine leukemia inhibitory factor (mLIF) and two kinase inhibitors (2i), PD0325901(MEK1/2 inhibitor) and CHIR99021 (GSK3β inhibitor). The derived colonies showed resemblance to naïve iPSCs in their morphology (dome-shaped) and are dependent on mLIF and 2i condition to maintain an undifferentiated phenotype. The expression of endogenous pluripotency markers such as Oct4, Nanog, and Rex1 transcripts were confirmed, suggesting that induced ciPSCs were in the late intermediate stage of reprogramming. In conclusion, the non-integrating and self-replicating VEE RNA replicon system can potentially make a great contribution to the generation of clinically applicable ciPSCs, and the findings of this study suggest a new method to utilize the VEE RNA approach for canine somatic cell reprogramming. Full article
Show Figures

Figure 1

4 pages, 157 KiB  
Letter
Letter to the Editor: Venezuelan Equine Encephalitis virus 1B Invasion and Epidemic Control—South Texas, 1971
by Robert G. McLean
Trop. Med. Infect. Dis. 2020, 5(2), 104; https://doi.org/10.3390/tropicalmed5020104 - 22 Jun 2020
Cited by 2 | Viewed by 2738
Abstract
The epidemic strain of Venezuelan equine encephalitis virus (VEE) 1B invaded south Texas in 1971. The success of the eventual containment and control of the virus invasion was the early recognition and immediate detection, cooperation, coordination, and participation among multiple federal agencies. There [...] Read more.
The epidemic strain of Venezuelan equine encephalitis virus (VEE) 1B invaded south Texas in 1971. The success of the eventual containment and control of the virus invasion was the early recognition and immediate detection, cooperation, coordination, and participation among multiple federal agencies. There were 4739 wild vertebrate animals trapped on a ranch in the area with only 1 VEE virus isolation from a Virgina opossum (Didelphis virginiana). A large number of mosquitoes were also collected on the ranch and tested, resulting in 240 VEE virus isolations. Virus isolations were obtained from 58% of the 33 equines tested. Wild vertebrates did not play a significant role in the outbreak. Full article
(This article belongs to the Special Issue Arthropod-Borne Viruses: The Outbreak Edition)
13 pages, 653 KiB  
Review
Alphaviruses in Gene Therapy
by Kenneth Lundstrom
Viruses 2009, 1(1), 13-25; https://doi.org/10.3390/v1010013 - 21 Apr 2009
Cited by 29 | Viewed by 12312
Abstract
Alphaviruses are enveloped single stranded RNA viruses, which as gene therapy vectors provide high-level transient gene expression. Semliki Forest virus (SFV), Sindbis virus (SIN) and Venezuelan Equine Encephalitis (VEE) virus have been engineered as efficient replication-deficient and -competent expression vectors. Alphavirus vectors have [...] Read more.
Alphaviruses are enveloped single stranded RNA viruses, which as gene therapy vectors provide high-level transient gene expression. Semliki Forest virus (SFV), Sindbis virus (SIN) and Venezuelan Equine Encephalitis (VEE) virus have been engineered as efficient replication-deficient and -competent expression vectors. Alphavirus vectors have frequently been used as vehicles for tumor vaccine generation. Moreover, SFV and SIN vectors have been applied for intratumoral injections in animals implanted with tumor xenografts. SIN vectors have demonstrated natural tumor targeting, which might permit systemic vector administration. Another approach for systemic delivery of SFV has been to encapsulate replication-deficient viral particles in liposomes, which can provide passive targeting to tumors and allow repeated administration without host immune responses. This approach has demonstrated safe delivery of encapsulated SFV particles to melanoma and kidney carcinoma patients in a phase I trial. Finally, the prominent neurotropism of alphaviruses make them attractive for the treatment of CNS-related diseases. Full article
(This article belongs to the Special Issue Novel Viral Vector Systems for Gene Therapy)
Show Figures

Figure 1

Back to TopTop