Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = UMDA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 1534 KiB  
Article
A Comparative Study of Factors Influencing ADAS Acceptance in Belgium and Vietnam
by Kris Brijs, Anh Tuan Vu, Tu Anh Trinh, Dinh Vinh Man Nguyen, Nguyen Hoai Pham, Muhammad Wisal Khattak, Thi M. D. Tran and Tom Brijs
Safety 2024, 10(4), 93; https://doi.org/10.3390/safety10040093 - 8 Nov 2024
Viewed by 2155
Abstract
This paper focuses on the acceptance of ADASs in the traffic safety and human factor domain. More specifically, it examines the predictive validity of the Unified Model of Driver Acceptance (UMDA) for an ADAS bundle that includes forward collision warning, headway monitoring and [...] Read more.
This paper focuses on the acceptance of ADASs in the traffic safety and human factor domain. More specifically, it examines the predictive validity of the Unified Model of Driver Acceptance (UMDA) for an ADAS bundle that includes forward collision warning, headway monitoring and warning, and lane-keeping assistance in Belgium and Vietnam, two substantially different geographical, socio-cultural, and macroeconomic settings. All systems in the studied ADAS bundle are located at the Society of Automotive Engineer (SAE)-level 0 of automation. We found moderate acceptance towards such an ADAS bundle in both countries, and respondents held rather positive opinions about system-specific characteristics. In terms of predictive validity, the UMDA scored quite well in both countries, though better in Belgium than in Vietnam. Macroeconomic factors and socio-cultural characteristics could explain these differences between the two countries. Policymakers are encouraged to prioritise initiatives that stimulate the purchase and use of the ADAS, rather than on measures meant to influence the underlying decisional balance. Full article
Show Figures

Figure 1

16 pages, 816 KiB  
Article
A Self-Validating Method via the Unification of Multiple Models for Consistent Parameter Identification in PEM Fuel Cells
by Luis Blanco-Cocom, Salvador Botello-Rionda, Luis Carlos Ordoñez and Sergio Ivvan Valdez
Energies 2022, 15(3), 885; https://doi.org/10.3390/en15030885 - 26 Jan 2022
Cited by 7 | Viewed by 2909
Abstract
Mathematical models are used for simulating the electrochemical phenomena of proton-exchange-membrane (PEM) fuel cells. They differ in the scale, modeling variables, precision in specific features, and the required parameters. Often, the input parameters are not measurable and need to be estimated by minimizing [...] Read more.
Mathematical models are used for simulating the electrochemical phenomena of proton-exchange-membrane (PEM) fuel cells. They differ in the scale, modeling variables, precision in specific features, and the required parameters. Often, the input parameters are not measurable and need to be estimated by minimizing the error between the model output and experimental data; however, the estimated parameters could differ from one model to another, hence provoking uncertainty about the correct values and the model’s suitability for simulating the real phenomenon. To address these issues, we introduced a self-validating methodology using three different mathematical models: The first set of parameters was estimated with a semi-empirical (SE) model; then, it was used for computing several points of the polarization curve (PC). The SE parameters and points were used to estimate a second set of parameters and to compute a single point of the PC with a macro-homogeneous (MH) model. The parameters and concentration profiles from the MH solution were used to estimate the last set of parameters with the reaction–convection–diffusion (SP-RCD) model, increasing the detail of the simulation. The SP-RCD parameters were returned to the MH model to recover the complete PC. The proposed methodology requires a few data points to consistently recover the same PC from the three models through estimating parameters in one model and validating them in the others. As output, the method provides complete information about several variables and the physical properties of the catalysts. In addition to the consistent simulation, the numerical results are consistent with those reported in the literature, thus validating the proposed method. Full article
(This article belongs to the Special Issue Hydrogen and Fuel Cell Technology, Modelling and Simulation)
Show Figures

Graphical abstract

21 pages, 401 KiB  
Article
Scheduling in Heterogeneous Distributed Computing Systems Based on Internal Structure of Parallel Tasks Graphs with Meta-Heuristics
by Apolinar Velarde Martinez
Appl. Sci. 2020, 10(18), 6611; https://doi.org/10.3390/app10186611 - 22 Sep 2020
Cited by 7 | Viewed by 3715
Abstract
The problem of scheduling parallel tasks graphs (PTGs) represented by directed acyclic graphs (DAGs) in heterogeneous distributed computing systems (HDCSs) is considered an nondeterministic polynomial time (NP) problem due to the diversity of characteristics and parameters, generally opposed, intended to be optimized. The [...] Read more.
The problem of scheduling parallel tasks graphs (PTGs) represented by directed acyclic graphs (DAGs) in heterogeneous distributed computing systems (HDCSs) is considered an nondeterministic polynomial time (NP) problem due to the diversity of characteristics and parameters, generally opposed, intended to be optimized. The PTGs are scheduled by a scheduler that determines the best location for the sub-tasks that constitute the PTGs and is responsible for allocating the resources of the HDCS to the sub-tasks of the PTGs. To optimize scheduling and allocations, the scheduler extracts characteristics from the internal structure of the PTGs. The prevailing characteristic in existing research is the critical path (CP), which is limited to providing execution paths of PTGs; considering this limitation, we extend the array method proposed in Velarde, which extracts two additional characteristics to the CP: the layering and the density of the graph for scheduling. These characteristics are represented as integer values of the PTGs to be scheduled; the values obtained from the characteristics are stored in arrays representing populations that are evaluated with the heuristic univariate marginal distribution algorithm (UMDA) and in terms of comparison with the genetic algorithm. With the best allocations produced by the algorithms, two performance parameters are evaluated: makespan and waiting time. The results indicate that when more PTGs characteristics are considered, resource allocations are optimized, and scheduling times are reduced. The results obtained with the heuristic algorithms show that UMDA provides shorter scheduling and allocation times compared with the genetic algorithm; UMDA widely distributes the sub-tasks in the clusters, whereas the genetic algorithm compacts the assignments of the PTGs in the clusters with a longer convergence time that translates into longer scheduling and allocation times. Extensive explanations of these conclusions are provided in this work, based on the conducted experiments. Full article
Show Figures

Figure 1

22 pages, 1648 KiB  
Article
Effect of a Supplementation with Two Quelites on Urinary Excretion of Arsenic in Adolescents Exposed to Water Contaminated with the Metalloid in a Community in the State of Guanajuato, Mexico
by Yair Olovaldo Santiago-Saenz, Rebeca Monroy-Torres, Diana Olivia Rocha-Amador and Alma Delia Hernández-Fuentes
Nutrients 2020, 12(1), 98; https://doi.org/10.3390/nu12010098 - 30 Dec 2019
Cited by 9 | Viewed by 4359
Abstract
Quelites are Mexican wild plants, reported as excellent sources of nutritional compounds such as amino acids (serine, glycine, and cysteine), minerals (Mg, Fe, and Zn), and phytochemicals, as phenolic acids (chlorogenic acid) and flavonoids (phloridzin and naringenin); on the other hand, high biological [...] Read more.
Quelites are Mexican wild plants, reported as excellent sources of nutritional compounds such as amino acids (serine, glycine, and cysteine), minerals (Mg, Fe, and Zn), and phytochemicals, as phenolic acids (chlorogenic acid) and flavonoids (phloridzin and naringenin); on the other hand, high biological activity has been shown in these compounds. This work aimed to evaluate the effect of a supplementation with two endemic quelites of Mexico (Chenopodium berlandieri L. and Portulaca Oleracea L.); in addition to supplementation, a nutritional intervention was performed; the biomarkers of hemoglobin (Hb), urinary malondialdehyde (UMDA), and urinary arsenic (UAs) were measured in adolescents exposed to arsenic. A clinical intervention study was conducted in 27 adolescents ages 11 to 12 years for 4 weeks. Weekly anthropometric and dietary evaluations were carried out, as well as the concentration of Hb; the UMDA and UAs were performed by plate-based colorimetric measurement and atomic absorption spectrophotometry with the hydrides generation system, respectively. The results showed that UMDA concentrations had a significant improvement in the supplemented group (SG) vs. control group (CG) (SG = 1.59 ± 0.89 µM/g creatinine vs. CG = 2.90 ± 0.56 µM/g creatinine) in the second week of intervention; on the other hand, the supplemented group showed an increase in Hb levels (15.12 ± 0.99 g/dL) in the same week; finally after the second week, an increase in UAs levels was observed significantly compared to the baseline value (Baseline: 56.85; Week 2: 2.02 µg/g creatinine). Therefore, the results show that the mixture of quelites (a rich source of phytochemicals and nutrients) improved hemoglobin and UMDA levels, and urinary arsenic excretion from the second week in the exposed population. Full article
(This article belongs to the Special Issue Nutraceutical, Nutrition Supplements and Human Health)
Show Figures

Figure 1

Back to TopTop