iriried applied
L sciences

Article

Scheduling in Heterogeneous Distributed Computing
Systems Based on Internal Structure of Parallel Tasks
Graphs with Meta-Heuristics

Apolinar Velarde Martinez

Instituto Tecnolégico el Llano Aguascalientes, El Llano Aguascalientes, Mexico 20330, Mexico;
apolinar.vm@Illano.tecnm.mx; Tel.: +52-4811-14-2611

check for
Received: 7 August 2020; Accepted: 13 September 2020; Published: 22 September 2020 updates

Abstract: The problem of scheduling parallel tasks graphs (PTGs) represented by directed
acyclic graphs (DAGs) in heterogeneous distributed computing systems (HDCSs) is considered
an nondeterministic polynomial time (NP) problem due to the diversity of characteristics and
parameters, generally opposed, intended to be optimized. The PTGs are scheduled by a scheduler that
determines the best location for the sub-tasks that constitute the PTGs and is responsible for allocating
the resources of the HDCS to the sub-tasks of the PTGs. To optimize scheduling and allocations, the
scheduler extracts characteristics from the internal structure of the PTGs. The prevailing characteristic
in existing research is the critical path (CP), which is limited to providing execution paths of PTGs;
considering this limitation, we extend the array method proposed in Velarde, which extracts two
additional characteristics to the CP: the layering and the density of the graph for scheduling.
These characteristics are represented as integer values of the PTGs to be scheduled; the values
obtained from the characteristics are stored in arrays representing populations that are evaluated
with the heuristic univariate marginal distribution algorithm (UMDA) and in terms of comparison
with the genetic algorithm. With the best allocations produced by the algorithms, two performance
parameters are evaluated: makespan and waiting time. The results indicate that when more PTGs
characteristics are considered, resource allocations are optimized, and scheduling times are reduced.
The results obtained with the heuristic algorithms show that UMDA provides shorter scheduling
and allocation times compared with the genetic algorithm; UMDA widely distributes the sub-tasks
in the clusters, whereas the genetic algorithm compacts the assignments of the PTGs in the clusters
with a longer convergence time that translates into longer scheduling and allocation times. Extensive
explanations of these conclusions are provided in this work, based on the conducted experiments.

Keywords: parallel tasks graphs; heterogeneous distributed computing systems; scheduling; critical
path; layering; density; genetic algorithm; univariate marginal distribution algorithm

1. Introduction

The diversity of the characteristics of heterogeneous distributed computing systems (HDCSs),
such as the speed of the processors, the number of cores per processor, the geographic distances
between processors, and the number of local networks, among others, make it difficult to optimize
resource use when seeking to maximize computing power with parallel applications. One of the most
widespread methods used to program parallel applications running on HDCSs is through parallel
tasks graphs (PTGs) [1]. The PTGs are constituted by a set of sub-tasks that are assigned in the HDCS
computer resources for their execution [2,3] through a previous scheduling. The scheduling and
allocation are performed by a scheduler that works in two phases: first, it schedules the sub-tasks using
the characteristics of the PTGs and the HDCS resources, and second, it allocates the sub-tasks of the
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PTGs to the target resources, where each sub-task is executed until its completion [4-8]. The following
two paragraphs describe each phase of a PTG scheduler in an HDCS, to explain the general context of
this research and thus facilitate its understanding.

The task scheduling phase requires an analysis of the characteristics of the PTGs. The most
frequently used characteristic is the Critical Path (CP), which defines the structure of a graph and is
obtained by traversing all the paths from the start node to the end node of the PTG. By definition, this is
the most expensive path in the execution of a PTG [5-7,9,10], and it is high priority in the allocation of
resources to speed up the execution of the application. Other characteristics also define the graph’s
internal structure, such as the graph density and layering [11,12]. The graph density allows seeing
how much information is transferred between sub-tasks in the PTGs, whereas the layering determines
the number of sub-tasks per PTG level. These two features, in addition to the CP, when considered
in the scheduling of the PTGs, can speed up scheduling and optimize the resource allocations of the
HDCS, as shown in this paper. The task allocation phase requires placing each sub-task of the PTG to a
HDCS resource, where it remains until the completion of its execution. To optimize the execution of
the PTGs, the allocation considerations in this work include two determining factors:

e the proximity of the sub-tasks that have dense communication, which can be obtained by means
of graph density, and

e the permanence of the sub-tasks of a PTG in the same cluster, considering the layering as a
determining factor for the assignment.

To conduct experiments with both factors, PTGs should be created randomly with
sufficiently heterogeneous characteristics and the schedulers should be evaluated in uncontrolled
environments [13]. In addition, it is necessary to consider the generation of PTGs from real applications.

This paper extends the array method [8], a scheduler whose functionality is based on the extraction
of three characteristics: CP, graph density, and layering of the PTGs that remain in a queue for
execution in an HDCS (in this paper, the terms HDCS and target system are used equivalently).
The characteristics of each PTG are represented as integer values that are stored in arrays that are
used to generate allocations in the target system and, with these allocations, produce populations
that are later evaluated by two algorithms: Univariate Marginal Distribution Algorithm (UMDA) and
genetic algorithm. Evaluations with both algorithms produce the best allocations of sub-tasks to HDCS
resources, with the aim of optimizing two performance parameters, which are graphed to observe and
describe their results.

The performance parameters that are evaluated in this paper are makespan and waiting time.
The makespan evaluates the total execution time of the parallel task [6], and the waiting time is the time
a PTG waits for its scheduling and allocation in the HDCS. The results obtained from the evaluations
show that the UMDA exceeds the genetic algorithm in the scheduling speed and resource allocation
but significantly lacks a process for task grouping in the clusters, causing a disaggregation of sub-tasks
that belong to a PTG. The genetic algorithm has slower scheduling and allocation times but it achieves
closer sub-task groupings of PTGs, which optimizes communication times between tasks.

This research, which extends a previously published method [8], includes six new contributions,
as described below.

First, in [8], only one algorithm for random task generation was used, and thus, we used
the following.

o  The Markov chain algorithm [14] for the random generation of PTGs, whose main feature is the
generation of PTGs with a greater distribution of sub-tasks in the initial phase, allowing a rapid
consumption of resources and observing the behavior of the heuristic algorithms.

e  The parallel approach for the random generation of graphs on Graphics Processing Units
(GPUs) [15], shows a thinning of the width of the PTG, and each level produces a substantial
number of edges, indicating the parallel applications with high rates of communication between
them, allowing evaluation of the communication times of the target system [13].
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Second, two performance parameters—makespan and waiting time—are evaluated separately
with each of the above algorithms to evaluate the proposed scheduler in terms of its response times
with different workloads as follows,

e the makespan parameter, which is the most widely used parameter in the literature to evaluate a
schedulers’ performance, which provides a perspective on the total time each of the PTGs remains
in the HDCS from their arrival in the queue to the end of their execution, and

e the waiting time, which is the time that a PTG waits for scheduling and allocation in the queue of
the HDCS. This parameter provides an evaluation of the scheduler’s response times.

Third, the number of clusters in the target system is increased to evaluate the growth of the
resource matrix, and the response times of the algorithm when many processors remain available.

Fourth, an example is provided of the array method to show how it works and to achieve an
understanding of its concepts and algorithms.

Fifth, the quality parameter of the allocations is evaluated to verify the percentage of allocated
(used) resources of the HDCS once each of the algorithms (UMDA and genetic) performs the scheduling
and allocation. Evaluating the quality of allocations is important because it measures the performance
of the algorithm when increasing and decreasing the number of resources available in the HDCS;
it also allows observing the behavior of each of the algorithms with a minimum or maximum amount
of resources, which represents the optimization of resources.

Sixth, the section on basic definitions is extended for a broader understanding of the
proposed scheduler.

The remainder of this paper is structured as follows. Section 2 presents a set of terms and the
UMDA (the base algorithm used in this paper). Section 3 summarizes related studies that deal with
scheduling problems and critical paths, and studies that proposed solutions to the layering problem
in Directed Acyclic Graph (DAG) tasks. Section 4 explains the array method with an example using
the basic concepts in Section 2; then, Section 5 describes the experiments and the results obtained on
the hardware and software platforms. Section 6 provides a discussion of this work. Section 7 outlines
the subsequent studies that are currently being carried out, and Section 8 describes the materials and
methods used to carry out this research. Finally, Section 7 presents the conclusions of this work.

2. Basic Definitions

This section defines a set of terms to help understand the following sections in this paper.
It considers the definitions contained in [8,13] and other definitions arising from the extension of
this research. An additional subsection to explain the UMDA is provided.

Definition 1. The target system is constituted by Cy clusters Cy, C, ...Cy, where k is the number of clusters of
the HDCS. Each cluster contains m heterogeneous processors with n processing cores. Therefore, Cy, ,, ,, denotes
the core k processor n processing core m.

Definition 2. A PTG can be modeled by a directed acyclic graph (DAG) T = (N, E), where N = {; : i =
1,.., N} is aset of N nodes or sub-tasks and E = {E;; :i,j = 1,..., N} is a set of E edges. Parallel task graph T
can be characterized by (n;, {1 < j <u; |TZ-,]-}, Gi, Vi, W;), where n; is the number of sub-tasks of T;, the second
parameter is the set of sub-tasks, G; is the set of relations directed between the sub-tasks, V; is the number of
levels of T;, and W; the width of each level of T; (represented by a vector). The PTG consists of a set of nodes and
edges (directed relationships). The nodes represent the execution requirements of the task, whereas the directed
relationships show the execution flow.

Definition 3. A directed relationship from sub-task 7 ; to T; , means that T; ;. can start its execution only if
T; j completes its own. In this case, we call T; ; a parent sub-task of T; x and T; . the child of T; j. Each sub-task
in a given DAG task can have several parents and children. An initial sub-task is a sub-task without parents,
whereas a final sub-task is a sub-task without children. A PTG has a start sub-task and a finish sub-task.
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Definition 4. Layering. Given T, where each n € N node has a positive width W;, a division by layers or levels
of T; (also called stratification of T;) is a partition of its set of nodes V within disjointed subsets V1,V2,..., Vh,
such that if (u,v) € E, whereu € V;and v € Vj, then i > j. A DAG with a stratification or division by levels
is called a stratified digraph.

Definition 5. The width of a level Vy is traditionally defined as w(V) = Y_,cv,, and the width of a stratified
digraph (divided into layers or levels) is defined by the equation w = maxy<y<pw(Vy)

Definition 6. The height of a vertex is denoted by [6]:

0if PRED(n;) = @
height(n;) = 1)
1+ max(height(n;))Vn; € PRED(n;)otherwise

Definition 7. The set of DAG tasks that represents a synthetic load is denoted by T = {Ty, ..., Tn }

Definition 8. The length of the critical path of a DAG task [6], is denoted by

Z Wn,-

M= [cp length

|

where M is the minimum number of processors and Wy, is the processing time of task i.

Definition 9. The cost of calculating an execution cost (EC) of a sub-task represented by a node expressed in
flops is the cost of executing a sub-task once it is assigned to a processor. The cost of executing the total of the
sub-tasks of task i is expressed as

Y. ECij )

\'/Ti/jET,'

Definition 10. The cost of communication represented by CCx, s, between sub-tasks 7 j and T; i is expressed
in bytes.

Definition 11. Makespan, the length of the scheduling produced by the algorithm, is expressed as
makespan = max(FT(n;)). ©)]

Definition 12. The start time of the task is the start time of each DAG task and is calculated according to:

n—1 n—1
S(Tu) = EXi(}]) + DCTH(Y.) + STr, om0 @)
T T
where St(Ty,) is the start time of the task, EX; (Z’T’fl) is the execution time of its predecessor nodes, DC Ty (E*Tlfl)
corresponds to the data communication time of its predecessor nodes, and STt,_, , is the sending time of the
task to the processor.

Definition 13. The task completion time (TCT) is the time that is recorded in the matrix once the task has
finished its execution in the processor; the parameter is calculated by

TCT = S4(Ty) + TaskExecutionTime. (5)

Definition 14. The quality of the allocations represents the percentage of occupied processors in each allocation
made by the algorithms, and is calculated as the total sum of processors that are occupied in the allocation,
among the total number of processors in the target system times 100. The quality of the allocations is obtained with
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Yt V7t that contains a n;
7]

Qa:(

) x 100. (6)

With the aforementioned definitions, we consider an HDCS with Cj clusters and synthetic load T
of tasks. Each PTG is scheduled in the Cj cluster set by means of a scheduler respecting the execution
requirements, the directed relationships, and the start times of each DAG task.

2.1. UMDA

Distribution Estimation Algorithms (DEAs), are evolutionary algorithms that use a collection of
candidate solutions to perform search paths avoiding local minima [16,17]. These algorithms use the
estimation and simulation of the joint probability distribution as an evolutionary mechanism instead of
directly manipulating the individuals that represent solutions to the problem. In a DEA, a population
of individuals represents solutions to the problem. Three types of operations are iteratively performed
on the population: generating a subset of the best individuals in the population, learning a probability
distribution model from the selected individuals, and new individuals are generated by simulating the
obtained distribution model. The algorithm stops when a certain number of generations is reached or
when the population’s performance stops significantly improving.

To estimate the joint probability distribution at each generation from the selected individuals,
the univariate marginal distribution algorithm (UMDA) is used. Thus, the joint probability distribution
is factored as the product of independent univariate distributions [16,18], i.e.,

pi(x) = p(x | Di* ]_[ pi(x )
Each univariate probability distribution is estimated from the marginal frequencies:

Y1 6i(Xi = x; | D)

i) = N ®
where
0if in j—th DY*,, X; = x;
5' X — . DSE — l 1 ! .
j(Xi = xi | D%y) { 1 in other case ®

The definitions in this section are explicitly referenced in the following sections.

3. Related Works

This section describes research work in which contributions in the area of scheduling using the
structure of the PTGs are highlighted .

3.1. Scheduling Problems and Critical Paths

Qambhieh et al. [2] analyzed the DAG tasks considering the internal structure and execution flow of
the DAGs. They presented the optimal scheduling algorithm global earliest deadline first (global EDF)
for scheduling in homogeneous multiprocessor systems; it is a fixed work priority allocation algorithm
in which the DAG task with the first absolute deadline has the highest priority. Mustafizur et al. [10]
described the dynamic critical path for grids (DCP-G) algorithm that makes use of two execution
parameters: absolute execution time (AET), defined as a minimum execution time according to the size
of the task, and absolute data transfer time (ADTT), which is defined as the minimum time required to
transfer the task output given its current location on the grid. Ahmad et al. [6] proposed a solution
based on the evolutionary stochastic technique known as particle swarm optimization (PSO) in three
consecutive steps using the critical path of the PTGs: preparation of the graph, representation of
the solution, and particle generation. The scheduling is evaluated after assigning each task to its
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corresponding processor by calculating the capacity of the particles. The best particle is the one with
the minimum makespan. Takpe et al. [5] presented a solution based on a heterogeneous collection of
homogeneous C clusters with identical processors. The main objective is to assign parallel tasks within
a single cluster using a critical path algorithm. The algorithm proceeds in two steps: allocation and
placement. In the first, the reference allocation is determined and a function is designed to deduce the
number of processors to be assigned to a task in each cluster. In the second step, each completed task is
allocated according to the earliest possible completion time. Minhaj et al. [7] started from the intuitive
assumption that effective scheduling occurs when the tasks on the critical path are scheduled first.
The scheduling proceeds is as follows. First, the graph is walked initially, and critical paths are found
based on two costs: average costs of execution and the communication costs of the sub-tasks. Second,
the processors are allocated, using queues based on restricted critical path and containing tasks ready
for scheduling. Duk et al. [9] presented the Critical Path Identification (CPI) method, which analyzes
the characteristics of workflow control structures. It is based on the average execution time of the
activities and it systematically determines the critical path in a workflow.

3.2. Solutions to the Layering Problem in DAG Tasks

To stratify DAG tasks, layers are applied and sets of vertices are divided into subsets so that
the nodes connected by a directed route belong to different subsets. The subsets are assigned whole
ranges so that the range of the subset that contains the edge is smaller than the range of the subset that
contains its ancestor edge [11]. In current studies, different methods have been proposed to stratify a
graph [11]. Three widely used stratification algorithms find the disposition of a DAG task; they are
subject to some of the following aesthetic criteria: the longest path algorithm, the Coffman—Graham
algorithm, and the Gansner ILP (Integer Linear Programming) algorithm [12]. In graph stratification
studies, two aesthetics of the graph are sought: stratification area and the number of fictitious nodes
that introduce the algorithms [12]. For node stratification, we did not consider the aesthetics of the
graph in this study.

4. Array Method

This section defines the concepts and algorithms of the array method proposed in [8].
The operation of the array method is further explained and complemented using an example.

The array method neither modifies the PTG nor are subgraphs created during the analysis of the
PTGs. The queue discipline that stores PTGs on arrival at HDCS is first come first serve (FCFS) and is
large enough to accommodate PTGs.

The array method is a scheduler that uses procedures for filling a set of arrays in each of its two
phases. The scheduling phase considers the procedures for filling the following arrays; resources,
characteristics, allocations, and populations. The allocation phase considers the arrays of the start
times of the tasks.

The following paragraphs describe each array and explain the procedures that generate the values
for the arrays and how the arrays are used to build the populations that are evaluated by the UMDA
and genetic algorithm.

4.1. Task Scheduling Phase

4.1.1. The Resource Matrix

Definition 15. The Resource Matrix, is a symmetrical matrix that stores the characteristics of the resources.

Consider an HDCS, as shown in Figure 1, similar to the system previously proposed [19].
In our case, the system is constituted by three clusters joined by a high-speed network; each cluster
is formed by different commodity processors and different number of processing cores in each
commodity processor.
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Processor 1 Proces=zorl Processor 2

Ny -V

High =peed netwaork

Proces=or 3

Processorl Processor 2

Processor 3

Figure 1. Heterogeneous distributed computer system (HDCS) with 3 clusters joined by a
high-speed network.

The cluster is characterized in the Table 1 resource matrix according to Definition 1. For our
sample case, Table 1 shows the resource matrix of the HDCS in Figure 1 using three clusters. Then,
using Definition 1, Cy, , represents cluster k, processor m, and processing core n. Thus, Cy ;.
represents cluster 1, processor 1, and processing cores 2. The positions of the matrix that contain 0
represent the processors that remain in the same network. Although the distance of the processors is 0,
the communication time must be considered at the start time of all the tasks. A list of the main steps of
the algorithm to create resource matrix is provided in Algorithm Al.

The columns that constitute the resource matrix include the following.

e  Resource ID number: an incremental number generated according to its integration to HDCS.

e  Number of processing cores of the resource: identified by an integer that represents the number
of processing cores of each processor according to Definition 1.

e Distance from one resource to another: a value obtained from the distance (the number of jumps)
from one processor to each of the processors in external clusters.

When a new resource is added to the HDCS, its features are extracted and placed into this matrix
using the feature extraction and resource sorting algorithm (the algorithm for verification of new
resources in the system is provided in Algorithm ATl).
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Table 1. Resource matrix. Symmetric matrix with distance between HDCS processors from Figure 1.

1 2 3 4 5 6 7
CGGl, 0 1 1 1 1 1 1
G2 1 0 0 0 1 1 1
G3 1 0 0 0 1 1 1
G4 1 0 0 0 1 1 1
G5 1 1 1 1 0 0 0
G364 1 1 1 1 0 0 0
CG74 1 1 1 1 0 0 0

The resource matrix aims to solve the problem of changes in resource availability [10],
which occurs during the release and allocation of resources.

The procedure for filling and updating values in this matrix is performed with the algorithm
for verification of new resources in the system, as shown in Appendix A. Processor speeds were not
considered in this study.

4.1.2. The Characteristics Matrix of the Evaluated DAGs

Definition 16. The Characteristics Matrix of the evaluated DAGs is a data structure that stores the data
obtained by the feature extraction algorithm.

This array is composed of the following columns.

e  DAG ID number, which is allocated according to arrival to the queue of the system.

e  The number of paths of the DAG, which are extracted by means of the depth first search (DFS)
algorithm, with a worst-case temporal complexity of O(b™). By means of DFS, all the execution
paths of the PTG are extracted with their lengths, obtaining the execution and communication
from each path.

o  The number of levels of the DAG and the number of vertices per level: a stratification or division
by levels; see Definition 4 in Section 2.

e  DAG density: The density of the graph denotes the number of edges between two levels of the
DAG. With a low value in this property, there are few edges; with large values, there are many
edges in the DAG.

The procedure for filling the characteristics matrix is as follows. Once DFS is run in the system,
the PTG execution paths are found, the costs of each task are sorted to obtain the PTG critical path
(the path that generates the highest execution costs as calculated using Definition 8) with the highest
scheduling and allocation priority. The remaining paths are considered as sub-critical paths and have a
decreasing priority in the allocation of system resources. The number of PTG levels (Definition 4) and
the number of vertices of each level are also generated during the same execution of the DFS algorithm.

The matrix of characteristics in this example considers the PTGs in Figures 2 and 3 that contain
the same number of nodes. For this example, Figure 2 represents PTG ID 1 and Figure 3 represents
DAG task ID 2. The characteristics of both PTGs are placed in Table 2 to represent the matrix of
characteristics of both PTGs. This table contains all the information of the analyzed PTGs.
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Figure 3. A second six-node DAG task.

Table 2. Characteristics matrix of the Parallel Task Graphs (PTGs) from Figures 2 and 3.

DAGID DAG Paths Path Nodes NumberLevel Nodes PerLevel DAG Density

1 1 ABDF 1 2 0-1—=2
1 2 ABEF 2 2 1-2—3
1 3 ACF 232
2 1 ABF 1 4 0-1—4
2 2 ABCF 1-2—+4
2 3 ABCDF

2 4 ABCDEF

2 5 ACF

2 6 ACDF

2 7 ACDEF

2 8 ADF

2 9 ADEF

2 10 AEF

4.1.3. The Allocation Matrix

Definition 17. The allocation matrix is a dynamic matrix that grows or decreases as the search for resources for
the PTGs is carried out.

This array is composed of the following columns.

e  System processors with their number of cores, according to Definition 1 in Section 2.
o PTG sub-task identifier according to Definition 2 in Section 2.

The procedure for filling the allocation matrix is as follows. With the characteristics matrix of the
PTGs, it is possible to start the process of searching for the resources in the HDCS, which performs the
filling of the characteristics matrix.
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The sub-task to a resource is allocated based on the characteristics of the PTGs, which, in the
execution of the algorithm, are called search criteria. The following paragraphs describe in detail how
the algorithm proceeds to search the resources in the HDCS.

The first search criterion is the PTG paths. The resource allocation process is started using each of
the routes in the DAG considering the first path in the characteristics matrix (column 2 DAG paths,
Table 2) as the critical path with the highest allocation priority; the rest of the paths are considered
subcritical paths by the algorithm. The vertices of the PTG that constitute the critical path are trimmed,
and then each of the subcritical paths is trimmed. The algorithm checks the processing cores in each
processor with the number of nodes in each path. Depending on the number of nodes in the path,
it looks for a processor with a number equal to or less than the number of nodes in the path. If the
number of nodes in the path is greater than the maximum number of cores than one (or more) of the
system processors, then it applies the divide and conquer method: it divides the number of nodes
in the path by two, rounds down to the lowest number, and then looks again for a processor with
the number of nodes obtained with the division. If, with this division, it is not possible to cover the
number of nodes in the path again, the two results are again divided by two. This condition ends
when it obtains a number of nodes that can be covered by the number of processor cores in the system.

When a PTG sub-task is likely to be allocated to the resource in the row, the column is marked
with a value of 1, indicating the processor as a candidate to contain the sub-task. The algorithm seeks to
allocate one sub-task per processing core, which avoids overloading threads or processes in each core.

The allocation matrix is updated if a processor is located for the sub-task; the update occurs with
the PTG sub-tasks and the cores of each processor as follows. If a processor meets the condition of the
number of cores equal to or less than the number of nodes in the path, then this processor is placed in
the allocation matrix, indicating which DAG nodes will be allocated to that processor. This allocation
of cores to nodes indicates how many nodes of the DAG will remain in the same cluster for processing
and how many nodes of the DAG must be placed in other clusters. With the diversity of clusters where
the nodes are allocated, the distance is calculated to determine the communication load. Definition 10
(overhead) is used to generate the task during its processing. It is clear that the minimization function
will seek to process all the nodes of the DAG in the same cluster.

For the example described in this paper, Tables 3 and 4 show the allocation of the graph in Figure 2
using the DAG paths (each solution is shown in a different shade of gray). The PTG has four vertices.
The algorithm looks for a first allocation of a processing element (PE) of four cores. If it is not able
to locate the path in a PE with this number of cores, it will seek to assign two dual core PEs with a
minimum distance, considering that the minimum value of the distance is 0, which corresponds to a
processing element within the same local network (LAN). The next step is to look for the allocation
of the next path of the DAG without considering the vertices already allocated; for the example in
question, vertex D is allocated and a subsequent step aims to allocate vertex E, both with a dual core
PE. If a PE with these characteristics is not obtained, it will look for two PEs.

The second search criterion for the allocation of resources is the levels of the PTG. The information
provided by the PTG levels is the number of PTG levels and the number of vertices per level
(see Definition 4). For the case of the PTG in Figure 2, allocating by paths is the most feasible
process to accelerate the execution of the task, but this is not the case for the PTG in Figure 3 due to
the large number of paths generated. For this case, the algorithm seeks to assign only three PEs as
follows. For the case of level 1, it looks for a PE with a processing core; for level 2, the algorithm looks
for assigning a PE with eight processing cores (according to Definition 3); and for the last level of the
DAG, it looks for a PE of a single core, or in its case, a dual core.

For all three PEs, it is necessary to look for the minimum distance. Once the three PEs are assigned,
the DAG is processed sequentially so that the processing data flows in one direction. If the algorithm
does not locate an octa-core PE, the divide and conquer method is applied again. The aim is to locate
two quad-core PEs with a minimum distance. With this second search criterion, the assignment matrix
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is created to allocate the nodes to the processing cores of each processor, exactly as the allocation was
made for the DAG paths.

Table 3. Example of a first assignment in the grid for the Figure 2 DAG task using the DAG task paths
(each solution is shown in a different shade of gray).

A B C D E F HD
Cil, 0 0 0 0 0 0
G2 0 0 1 0 0 0
G3 1 1 0 1 0 1
Ch4s 0 0 0 0 1 0 0O

Table 4. Example of a second assignment in the grid for the Figure 2 DAG task using the DAG task
paths (each solution is shown in a different shade of gray).

A B C D E F HD
C1 1, 01 0 0 0
G2 0 0 0 0 1 0
C3 0 0 0 0 1 0
G4 1 1 0 1 0 1 1

For the case of the PTG in Figure 3, given space limitations, only one solution is shown in Table 5.
For this case, three solutions (each solution is shown in a different shade of gray) are presented,
each with its respective calculation of processor distances in the HDCS.

Table 5. Example of a first assignment in the grid for the Figure 3 DAG task using the DAG task paths.

A B C D E F HD
Cil, 1 0 0 0 0 0
G2 0 0 0 0 0 1
G3 0 1 1 1 1 0 1

G5 0 0 0 0 0 O

In conclusion, for the allocation matrix of this example, due to space reduction, only the processors
selected in the allocation process are listed. Tables 3-5 represent allocation solutions to the HDCS
of the PTG in Figures 2 and 3 using the run paths. In this case, possible assignments or solutions
are generated (each assignment is shown in different colors of gray). For each allocation produced,
the distance D (last column of the array) is calculated. This value is used in Tables 6 and 7, called the
initial population, in which each column S,, represents a generated solution, with the respective values
of each parameter.

4.1.4. Generation of the Population Matrix

First, the initial population is created from all the generated allocations (solutions) in the HDCS
using the search criteria. For our example, some of the allocations in Tables 3-5 are shown in
Tables 6 and 7, which represent the initial population denoted by Py, where h(x) represents the sum of
the independent variables and p represents univariate probability distribution.
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Table 6. Initial population. A first set of evaluation results for each parameter.

S1 S S3 Sa Ss S¢ S7 Ss

Distance 0 0 1 2 1 0 0 1
Processor status 0 1 1 1 0 0 2 2
Distance to objective cluster 0 0 1 0 1 0 0 1
h(x) 0 1 3 3 2 0 2 4

p 0 075 033 033 05 0 05 025

Table 7. Initial population. A second set of evaluation results for each parameter.

S$1 S22 S3 Sy S5 S¢ Sz Ss

Distance 0 0 1 2 1 0 0 1
Processor status 0 0 1 1 0 0 0 2
Distance to objective cluster 0 0 1 0 1 0 O 1
h(x) 0 0 3 3 2 0 0 4

P 0 0 03 033 05 0 0 025

Second, some individuals are selected from Py through the standard truncation selection method.
Half of the initial population is selected, denoted by Py°. The selection is carried out by a function
that minimizes the values of the three parameters. In the case of ties, when evaluating individuals,
the selection is conducted using probabilistic means.

The joint probability distribution expresses the characteristics of the selected individuals. They are
not considered to be interdependencies between variables, so they are considered to be independent
from the rest; thus,

Pl(x) = Pl(xl,..., X3) = H?:l p(xi | Dge).

The model is specified with three parameters. For each parameter,

p(x; | D§¢) with i =1,2,3.

The parameter values are shown in the last rows of Tables 6 and 7. Table 8 represents the case
consisting of the individuals obtained from the simulation of P; (x) extracted from Tables 6 and 7.

Table 8. File of cases for the solutions generated for the DAGs in Figures 2 and 3; where S, represents
a generated solution

3 Sy Ss Sy Ss Se Sy Ss
51:0 52:075 S3:033 54:033 5S55:05 S:0 S7:05 Sg:025
51 :0 Sz :0 53 :0.33 S4 :0.33 55 105 56 :0 57 :0 Sg :0.25

The previous steps are repeated until the stop conditions are met, which is the maximum number
of populations indicated in the algorithm, or when the population does not improve with respect to
the best of the individuals obtained in previous generations.

4.2. Allocation of Processors to Tasks

In the phase of allocating processors to tasks, if the processor is free at the time of allocation,
only the time of sending the task to the processor is considered. For the other case, if the processor is
busy, the time that the task waits to be sent to the processor is considered.

In our case, an unoccupied processor has a higher probability of being allocated, whereas an
occupied processor has a lower probability of being allocated. The task start time is calculated when
all predecessor nodes have finished their execution.

4.2.1. Best Allocation Search

The UMDA is executed based on the results presented by the allocation matrix. The contents of
the allocation matrix include the following.
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e  The distance of the nodes located on the processors. A high value in the indicates that the task
was disaggregated into several clusters.

e  The processor status parameter: occupied or unoccupied. An unoccupied processor is assigned a
value of 0; an occupied processor is assigned a value of 1.

o  The task location in the cluster parameter is a value obtained from the distance of the cluster
where the queue of tasks from the cluster where the task can be executed. The value of this
parameter depends on the number of clusters that the task must pass through to get to the cluster
where it will be executed. For example, suppose that the task from DAG 1 is located in cluster 2
and cluster 3, then the task location parameter will take the value of the necessary time to locate
the task in both clusters. When a task is located in the same cluster where the queue resides,
this parameter takes a value of 0.

For our example case, the queue resides in cluster 1 and the results of the three parameters are
shown in the allocation matrix (Tables 3 and 4).

The different node allocations aim to minimize the distance that provides the location of the task
in the cluster or in the clusters of the HDCS.

4.2.2. Matrix of the Start Times of the Tasks

Definition 18. Matrix of the Start Times of the Tasks, stores the results of the calculations of the start times of
each sub-task of the PTGs.

This matrix is constituted by the following columns.

e TaskID

o  Task arrival time: The time at which the task was queued in the waiting queue.

o  Task start time: This parameter is calculated according to Definition 12.

e  Rask completion time: This time is calculated using the formula in Definition 13 and is recorded
in the matrix when the execution on the processor is complete.

The procedure for filling the the matrix of the start times of the task, four parameters are used:

e  Processor status. When the processor is unoccupied, the task can start its execution, and only the
time of the task transfer is considered. When the processor is occupied, it considers the waiting
time in the queue plus the time of the task transfer.

e  The execution time of the parent tasks of 7. Any task that has one or more parent tasks (predecessor
nodes) is considered the longest completion time for each of the parent tasks. The execution
time of its predecessor nodes takes a value of 0 when the task has no parent node; when the
task has predecessor nodes, the time is the sum of the execution times of its predecessor nodes;
see Definition 9.

e  The communication time of the data of the parent tasks of n. This time is obtained from the time
required for the data to reach the processor allocated to the task; this is considered the longest
communication time. This parameter is obtained by calculating the communication times for all
the parent tasks of the node. The time with the highest value is obtained from this operation,
which means that the task must wait until all its parent nodes have finished their execution.

o The transmission time of the task to the processor is a value that depends on the network
speed and it is calculated through two parameters: if the task is allocated in the same cluster,
the internal speed of the cluster is considered, if the task is transmitted to an external cluster,
then the internal speed of the cluster is considered and it is added to the speed of the external
cluster. The transmission time of the task to the processor is considered as a fixed parameter of
5 nanoseconds for each distance unit.
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For the start sub-task that has no predecessors, the start time is limited by the release of the
processor assigned to it.

Table 9 shows the DAG task start times for Figure 2, and Table 10 shows the start times of Figure 3.
For both cases, the transmission time of the task to the processor is 0 because the task is executed in
the cluster where the arrival queue resides.

Table 9. Start times of DAG task nodes from Figure 2.

Task ID  Arrival Time Task Start Time Task Finalization Time

A 12:00 12:00 12:30
B 12:00 12:41 13:06
C 12:00 12:47 13:18
D 12:00 13:20 13:50
E 12:00 13:19 13:44
F 12:00 14:11 14:21

Table 10. Start times of DAG task nodes from Figure 3.

Task ID  Arrival Time Task Start Time Task Finalization Time

A 10:00 10:00 10:50
B 10:00 11:07 11:37
C 10:00 11:09 11:49
D 10:00 11:11 11:32
E 10:00 11:02 11:21
F 10:00 11:49 12:07

With the table of task start times, whether the DAG is allocated to the selected resources or queued
for execution is determined. A list of the main steps of the algorithm is provided in Appendix A.1 in
Algorithm A2 for once the data structures that the algorithm uses have been exposed.

5. Results

For the target system, tests with the arrays method were conducted in a cluster composed of
three servers configured with the Linux operating system, which is called a controlled environment,
connected to a high-speed network.

Two types of workloads were used to perform the tests of the arrays method: synthetic loads
and the loads of real applications proposed in the literature. The synthetic loads were generated
with smaller increments to enable meticulous and strict observations of the convergence times of the
evaluated algorithms; thus, the segments of the synthetic loads were constituted by 25, 50, 75, 100,
125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 500, 750, and 1000 PTGs. These loads were
generated with the two methods described in [13]: the Markov chain [14] and the parallel approach
for the random generation of graphs on GPUs [15]. For real applications, only the following PTGs
were produced; the decomposition of Lu [6], the elimination of Gauss—Jordan [6], molecular dynamic
code [20,21], and the fast Fourier transform [20], which constituted the PTG load and were built directly
in the program to generate PTGs from real loads. To compare results, the same loads were applied to
the UMDA and the genetic algorithm.

The programming language used was C.

In this study, we compared the genetic algorithm and UMDA. The genetic algorithm was chosen
because it is the most referenced heuristic method in the literature. The parameters of both algorithms
remained unchanged during the tests.

With the above described, the experiments were classified as follows; makespan and waiting time
were evaluated with the synthetic workloads generated using the algorithms of Markov chain and
the parallel approach for the random generation of graphs on GPUs. In addition, real application
loads were created and inserted within the workloads. The scheduling was conducted with the arrays
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method and the best allocations provided with the UMDA and genetic algorithm to produce the
execution comparisons.

5.1. Testing the Makespan Parameter with the Markov Chain Algorithm

In this section, evaluations are described using synthetic workloads generated with the Markov
chain algorithm and real application workloads. The parameter being evaluated is the makespan,
based on Definition 11.

Given the characteristics of the PTGs generated with the Markov chain algorithm, the largest
distribution of sub-tasks was generated in the initial phase. This produced an early search for resources
to make the assignments of the sub-tasks that constitute the PTG. The results obtained when evaluating
the makespan with the synthetic loads are shown in Figure 4. With the initial loads, the makespan was
significantly different between the two algorithms, but as the number of PTGs increased, the similarity
between the two algorithms increased. Due to these results, the number of PTGs was increased
substantially (from 400 to 500, 750, and 1000) to observe the behavior of the results. The greater the
increase in PTGs, the greater the distance in the results. This confirms that the response speed of the
UMDA is proportionally greater than that of the genetic algorithm. Therefore, the response speed of
the UMDA is substantially better than the genetic algorithm with different workloads.

Experiments to evaluate the makespan parameter

with the Markov Chain algorithm
1600

—— UMDA t

1400 Genetic Algorithm

1200 -

1000 -

800

Makespan in seconds

400

i i i i i
0 200 400 600 800 1000
Workload size

Figure 4. Results of makespan parameter with the Markov chain algorithm.

Once the populations to be evaluated were considered, the genetic algorithm was found to be
more time-consuming during the convergence process that aims for the best allocations.

To determine the quality of allocations, the percentage of resources used by each algorithm
(UMDA and genetic) was determined with this parameter. The values are calculated using Equation (6)
in Definition 14.

Figure 5 shows the percentages obtained with both algorithms. The experiment was performed
when the workload was equal to 500 PTGs and the availability of resources was 100%. Then, the latter
was reduced in each test, i.e., only 90% was made available in the second experiment, 80% in the third
experiment, and so on, until approximately 10% of the system resources were available.

The percentages obtained were variable. When there is a large amount of resources available in
the target system, the genetic algorithm manages to assign more tasks that use more resources in the
allocation; however, when the number of available resources decreases, it consumes more time in the
convergence, but maintains a high resource allocation. The advantage observed with the UMDA is
that it can provide the allocation results in less time even when the amount of resources is limited in
each allocation. We only provide one graph regarding quality of allocations because this research was
not meant to measure this parameter; however, for comparison purposes, it is described.
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Experiments to evaluate the makespan parameter with
the Parallel Approach for the Random Generation of Graphs on GPU’s algorithm

2000
—— UMDA Genetic Algorithm

1800 -

1600 -

» 14001
°
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8 12001
(2]
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‘= 1000
©
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& 800f
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2
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200

0 i i i i i
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Workload size

Figure 5. Results of makespan parameter with the parallel approach for the random generation of
graphs on GPUs algorithm.

5.2. Testing the Makespan Parameter with the Parallel Approach for the Random Generation of Graphs on GPUs

The parallel approach for the random generation of graphs on GPUs produces denser DAGs
(high representativeness of the tasks in each level of the DAG), but shows shorter critical paths [13].
Therefore, using this method, it is possible to extract the characteristics of the PTG levels and the density
of the graph more easily. The results obtained when evaluating workloads are shown in Figure 6.
The performance of both algorithms was similar with loads lower than 500 PTGs, but a substantial
difference was observed with workloads higher than 500 PTGs. The fundamental observation in this
experiment was the convergence time consumed by the algorithms.

Experiments to evaluate the Waiting Time parameter

with the Markov Chain method
1500 -

—— UMDA

Genetic Algorithm

1000 -

Waiting Time in seconds

0 200 400 600 800 1000
Workload size

Figure 6. Results of evaluating the waiting time parameter with the Markov chain method.

It is clear that the UMDA provides better response times when evaluating makespan because it
does not manipulate the solutions to the problem; it instead uses the joint probability distribution.

5.3. Evaluating the Waiting Time Parameter Using the Markov Chain Method and the Parallel Approach for the
Random Generation of Graphs on GPUs

The evaluation parameter, waiting time, allows the observation of the time that tasks must wait
before they can be served. It is an exponential parameter that increases as workloads increase the
number of PTGs. The main objective of this test was to determine if the UMDA exceeds the waiting



Appl. Sci. 2020, 10, 6611 17 of 21

times of the genetic algorithm. The results of using the Markov Chain method and the parallel
approach for the random generation of graphs on GPUs are shown in Figures 7 and 8, respectively.
Experiments to evaluate the Waiting Time parameter

with Parallel Approach for the Random Generation of Graphs on GPUs method
1800,

— UMDA

Genetic Algorithm

1600 -

1400 -

1200 -

1000 -

800

600

Waiting Time in seconds

400

0 200 400 600 800 1000
Workload size

Figure 7. Results of evaluating the waiting time with parallel approach for the random generation of
graphs on GPUs.
percentages obtained with the parameter

Quality of assignment
90

Genetic Algorithm
UMDA

85

751

701

Percentage of resources assigned

60 i i i i i i i i i

Experiment number

Figure 8. Percentages obtained with algorithms when measuring quality of assignments.

With both methods of synthetic load generation, the UMDA offers better waiting times; however,
there was no large difference because the waiting time increased almost in the same proportion with
both algorithms. The genetic algorithm produced more specific allocations in the clusters, whereas the
UMDA more easily disseminated the sub-tasks in the clusters, causing waiting times to reduce during
the workload increase in the experimental process.

5.4. General Comments on the Treatment of PTGs

This subsection describes the observations during the coding and testing phases of the proposed
method, which may be useful for future research in the scheduling and allocation of PTGs in HDCS.

e A frequent problem in the process of PTGs is the cycles generated in the vertices; in our case,
we used the deep search algorithm and obtained positive results.

e  For a more realistic evaluation of PTG scheduling, it is important to consider both methods for
generating synthetic workloads and loads that represent real applications.
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e  During the testing, it is important to have a large number of PTGs to observe the behavior of the
algorithms with different workloads.

6. Discussion

In this investigation, we extended the works that consider one characteristic of the PTGs to three
characteristics for their planning in the HDCS. The results of the experiments showed that using these
three characteristics optimizes the allocation of the resources of the PTGs.

The results demonstrated a difference in the UMDA response speed compared to the genetic
algorithm. We observed that transferring populations to a genetic representation is a considerably
time-consuming process. Therefore, an evaluation was proposed that determines the quality of the
assignments; this evaluation showed that the genetic algorithm can absorb a large amount of resources
in each assignment. This requires new studies in the parallelization of planning as described in the
next paragraph.

7. Future Work

Future work in this research could focus on two areas: method coding using parallel programming
and test development in an uncontrolled environment.

With the coding of the method using parallel programming, the aim is to accelerate the execution of
the programs that constitute the array method as well as to experiment with high-speed communication
equipment. In this work, we also consider the speed of the processors, which is an important feature
in the process of PTG allocation.

The experiments that include an uncontrolled environment are constituted by three geographically
distributed clusters. A cluster, called a resident cluster, is where workloads are generated, which is
then disseminated to the remaining clusters.

8. Materials and Methods

8.1. Hardware

Experiments with the array method were performed in Liebres INTELigentes cluster consisting of
3 servers configured with fedora and openSUSE Linux operating system:

e  Dell EMC Power Edge Rack Server Intel Xeon generation 2 with 20 cores. Dell Technologies 701 E.
Parmer Lane, Bldg PS2, Austin, TX 78753, USA.
e 2 Servers HPE ProLiant DL20 Gen10 Intel Xeon. 1501 Page Mill Rd, Palo Alto, CA 94304, USA.

Communication between servers was achieved with Switch Cisco Gigabit Ethernet SG350-28,
24 Ports 10/100/1000 Mbps. Cisco Systems, Inc. 300 East Tasman Dr. San Jose, CA 95134, USA.

8.2. Software

The Linux server was used as a resident operating system on servers. The Linux server was
responsible for providing the native C language compiler. Additional libraries were installed on the
servers to provide communication services in the cluster.

8.3. Method Coding

The programming language used in this research work was C using dynamic memory
programming; dynamic memory allows growing and shrinking according to the requirement of
synthetic workloads (it was not known how much memory was needed for the program), and memory
spaces are used more efficiently.
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9. Conclusions

In this study, we performed scheduling of PTGs in HDCS using three characteristics:
critical path, layering, and graph density. The scheduling was performed using two separate
algorithms—UMDA and genetic algorithm—to evaluate two parameters: makespan and waiting
time. The tests showed that the UMDA had faster response times than the genetic algorithm in the
tests proposed for this work. Both algorithms produced similar results with loads lower than 500
PTGs; with loads equal or higher than 500, the genetic algorithm had slower task allocation times in
the target system. We found that the genetic algorithm looks for potentially more specific allocations
in the clusters, aiming to keep the tasks closer to the allocated resources.

In addition to the tests proposed, we experimented with the quality of allocation parameter,
which allowed us to count the resources that were allocated and to obtain the percentages of resources
used in each allocation. This parameter allowed us to observe that the genetic algorithm improves the
quality of resource allocation because it produces more combinations during the search and allocation
process. Comparatively, the UMDA speeds up the allocations, but leaves resources unallocated into
clusters, whereas the genetic algorithm is slow in the allocations, but optimizes the allocations of the
resources available in clusters. The acceleration in the generation of allocations produced by the lack
of translations make the UMDA faster in generating results, whereas the genetic algorithm is able to
improve the results it provides.

Stricter testing of the allocation quality parameter will be conducted in subsequent studies.

10. Patents
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Appendix A.

Appendix A.1. Suggested Algorithms

In this subsection, we describe the two algorithms, shown in Algorithms Al and A2, that compose
the proposed method: the algorithm that verifies the new resources that are added to the system,
and the algorithm that seeks to optimize the use of resources when planning each of the parallel
task graphs.

Algorithm A1: Algorithm for the verification of new resources in the system.

! — —Checks for the availability of new resources in system
If (new resource), then
Extract characteristics of the resource
Store characteristics of resource in resource table
Calculate Hamming distance of resource, for all
resources of resource matrix

endif
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Algorithm A2: Parallel task graph planning algorithm.

While (there are DAG tasks in the queue) do

Obtain the internal characteristics of the DAG task,

and store them in the characteristics matrix.
! — — This process is repeated until all processors have been
assigned at least once.
! — — DAG task assignment search using the first search
criterion.

while (there are DAG routes and unoccupied processors) do
Obtain the DAG task route.
Assign processor according to number of cores and number
of nodes on the route.
Update the assignment and characteristics matrix.

endwhile
! — — DAG task assignment search using the second search
criterion.

While (there are DAG task levels) do
Get the level of the DAG.
Assign processor according to number of cores and
nodes of DAG task level.
Update the assignment and characteristics matrix.

endwhile
! — — Obtain values of allocation matrix, processor status and
location of task in cluster.
Execution of UMDA algorithm or Genetic Algorithm for obtaining best assignment
Calculate start times of task; update start times matrix of tasks.

Endwhile
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