Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = UAV mounted RIS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 355 KiB  
Article
A UAV-Assisted STAR-RIS Network with a NOMA System
by Jiyin Lan, Yuyang Peng, Mohammad Meraj Mirza and Fawaz AL-Hazemi
Mathematics 2025, 13(13), 2063; https://doi.org/10.3390/math13132063 - 21 Jun 2025
Viewed by 291
Abstract
In this paper, we investigate a simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-assisted non-orthogonal multiple access (NOMA) communication system where the STAR-RIS is mounted on an unmanned aerial vehicle (UAV) with adjustable altitude. Due to severe blockages in urban environments, direct links [...] Read more.
In this paper, we investigate a simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-assisted non-orthogonal multiple access (NOMA) communication system where the STAR-RIS is mounted on an unmanned aerial vehicle (UAV) with adjustable altitude. Due to severe blockages in urban environments, direct links from the base station (BS) to users are assumed unavailable, and signal transmission is realized via the STAR-RIS. We formulate a joint optimization problem that maximizes the system sum rate by jointly optimizing the UAV’s altitude, BS beamforming vectors, and the STAR-RIS phase shifts, while considering Rician fading channels with altitude-dependent Rician factors. To tackle the maximum achievable rate problem, we adopt a block-wise optimization framework and employ semidefinite relaxation and gradient descent methods. Simulation results show that the proposed scheme achieves up to 22% improvement in achievable rate and significant reduction in bit error rate (BER) compared to benchmark schemes, demonstrating its effectiveness in integrating STAR-RIS and UAV in NOMA networks. Full article
(This article belongs to the Special Issue Mathematical Modelling for Cooperative Communications)
Show Figures

Figure 1

22 pages, 865 KiB  
Article
Secrecy-Constrained UAV-Mounted RIS-Assisted ISAC Networks: Position Optimization and Power Beamforming
by Weichao Yang, Yajing Wang, Dawei Wang, Yixin He and Li Li
Drones 2025, 9(1), 51; https://doi.org/10.3390/drones9010051 - 13 Jan 2025
Cited by 1 | Viewed by 1503
Abstract
This paper investigates secrecy solutions for integrated sensing and communication (ISAC) systems, leveraging the combination of a reflecting intelligent surface (RIS) and an unmanned aerial vehicle (UAV) to introduce new degrees of freedom for enhanced system performance. Specifically, we propose a secure ISAC [...] Read more.
This paper investigates secrecy solutions for integrated sensing and communication (ISAC) systems, leveraging the combination of a reflecting intelligent surface (RIS) and an unmanned aerial vehicle (UAV) to introduce new degrees of freedom for enhanced system performance. Specifically, we propose a secure ISAC system supported by a UAV-mounted RIS, where an ISAC base station (BS) facilitates secure multi-user communication while simultaneously detecting potentially malicious radar targets. Our goal is to improve parameter estimation performance, measured by the Cramér–Rao bound (CRB), by jointly optimizing the UAV position, transmit beamforming, and RIS beamforming, subject to constraints including the UAV flight area, communication users’ quality of service (QoS) requirements, secure transmission demands, power budget, and RIS reflecting coefficient limits. To address this non-convex, multivariate, and coupled problem, we decompose it into three subproblems, which are solved iteratively using particle swarm optimization (PSO), semi-definite relaxation (SDR), majorization–minimization (MM), and alternating direction method of multipliers (ADMM) algorithms. Our numerical results validate the effectiveness of the proposed scheme and demonstrate the potential of employing UAV-mounted RIS in ISAC systems to enhance radar sensing capabilities. Full article
(This article belongs to the Special Issue Physical-Layer Security in Drone Communications)
Show Figures

Figure 1

22 pages, 3514 KiB  
Article
UAV-Mounted RIS-Aided Multi-Target Localization System: An Efficient Sparse-Reconstruction-Based Approach
by Jingjing Li, Jianhui Wang, Weijia Cui and Chunxiao Jian
Drones 2024, 8(11), 694; https://doi.org/10.3390/drones8110694 - 20 Nov 2024
Cited by 1 | Viewed by 1124
Abstract
Unmanned Aerial Vehicle (UAV) technology is increasingly gaining attention in localization systems due to its flexibility and mobility. However, traditional localization techniques often fail in complex environments where line-of-sight paths are obstructed. To address this challenge, this paper presents an innovative UAV-assisted high-precision [...] Read more.
Unmanned Aerial Vehicle (UAV) technology is increasingly gaining attention in localization systems due to its flexibility and mobility. However, traditional localization techniques often fail in complex environments where line-of-sight paths are obstructed. To address this challenge, this paper presents an innovative UAV-assisted high-precision multi-target localization system. The system utilizes UAVs equipped with Reconfigurable Intelligent Surfaces to create a reflective signal path, allowing a receiver sensor to capture these signals, creating favorable conditions for multi-target localization. Exploiting the sparsity of signals, we introduce a direct positioning algorithm that leverages Atomic Norm Minimization (ANM) to estimate the target’s location. To address the high complexity of traditional ANM methods, we propose a novel Coyote-ANM-based direct localization (CADL) approach. This method combines the coyote optimization algorithm with the alternating direction method of multipliers to achieve high-accuracy positioning with reduced computational complexity. Simulation results across various signal-to-noise ratio scenarios demonstrate that the proposed algorithm significantly improves localization accuracy, achieving lower root mean square error values and faster execution times compared to traditional methods. Full article
Show Figures

Figure 1

18 pages, 550 KiB  
Article
Resource Allocation for UAV-RIS-Assisted NOMA-Based URLLC Systems
by Zhengqiang Wang, Kunhao Huang, Qinghe Zheng, Bin Duo, Liuwei Huo and Mingqiang Yang
Drones 2024, 8(7), 301; https://doi.org/10.3390/drones8070301 - 7 Jul 2024
Cited by 1 | Viewed by 1628
Abstract
This work focuses on maximizing the sum rate of ultra-reliable low-latency communication (URLLC) systems by leveraging unmanned aerial vehicle-mounted reconfigurable intelligent surface (UAV-RIS) to provide short packet services for users based on the non-orthogonal multiple access (NOMA) protocol. To optimize the sum rate [...] Read more.
This work focuses on maximizing the sum rate of ultra-reliable low-latency communication (URLLC) systems by leveraging unmanned aerial vehicle-mounted reconfigurable intelligent surface (UAV-RIS) to provide short packet services for users based on the non-orthogonal multiple access (NOMA) protocol. To optimize the sum rate of system, a joint optimization is performed with respect to the power allocation, UAV position, decoding order, and RIS phase shifts. As the original problem is a non-convex integer optimization problem, it is challenging to obtain the optimal solution. Therefore, approximate solutions are derived using successive convex approximation (SCA), slack variables, and penalty-based methods. The simulation results demonstrate the superiority of the proposed resource allocation algorithm compared with the benchmark algorithm with orthogonal multiple access (OMA) scheme. In addition, this work emphasizes the performance gap between the proposed communication system and the traditional Shannon communication system in terms of throughput and the performance capacity sacrificed to achieve lower latency. Full article
(This article belongs to the Special Issue Space–Air–Ground Integrated Networks for 6G)
Show Figures

Figure 1

18 pages, 3681 KiB  
Article
Random Forest-Based Soil Moisture Estimation Using Sentinel-2, Landsat-8/9, and UAV-Based Hyperspectral Data
by Hadi Shokati, Mahmoud Mashal, Aliakbar Noroozi, Ali Akbar Abkar, Saham Mirzaei, Zahra Mohammadi-Doqozloo, Ruhollah Taghizadeh-Mehrjardi, Pegah Khosravani, Kamal Nabiollahi and Thomas Scholten
Remote Sens. 2024, 16(11), 1962; https://doi.org/10.3390/rs16111962 - 29 May 2024
Cited by 13 | Viewed by 4405
Abstract
Accurate spatiotemporal monitoring and modeling of soil moisture (SM) is of paramount importance for various applications ranging from food production to climate change adaptation. This study deals with modeling SM with the random forest (RF) algorithm using datasets comprising multispectral data from Sentinel-2, [...] Read more.
Accurate spatiotemporal monitoring and modeling of soil moisture (SM) is of paramount importance for various applications ranging from food production to climate change adaptation. This study deals with modeling SM with the random forest (RF) algorithm using datasets comprising multispectral data from Sentinel-2, Landsat-8/9, and hyperspectral data from the CoSpectroCam sensor (CSC, licensed to AgriWatch BV, Enschede, The Netherlands) mounted on an unmanned aerial vehicle (UAV) in Iran. The model included nine bands from Landsat-8/9, 11 bands from Sentinel-2, and 1252 bands from the CSC (covering the wavelength range between 420 and 850 nm). The relative feature importance and band sensitivity to SM variations were analyzed. In addition, four indices, including the perpendicular index (PI), ratio index (RI), difference index (DI), and normalized difference index (NDI) were calculated from the different bands of the datasets, and their sensitivity to SM was evaluated. The results showed that the PI exhibited the highest sensitivity to SM changes in all datasets among the four indices considered. Comparisons of the performance of the datasets in SM estimation emphasized the superior performance of the UAV hyperspectral data (R2 = 0.87), while the Sentinel-2 and Landsat-8/9 data showed lower accuracy (R2 = 0.49 and 0.66, respectively). The robust performance of the CSC data is likely due to its superior spatial and spectral resolution as well as the application of preprocessing techniques such as noise reduction and smoothing filters. The lower accuracy of the multispectral data from Sentinel-2 and Landsat-8/9 can also be attributed to their relatively coarse spatial resolution compared to the CSC, which leads to pixel non-uniformities and impurities. Therefore, employing the CSC on a UAV proves to be a valuable technology, providing an effective link between satellite observations and ground measurements. Full article
(This article belongs to the Special Issue GIS and Remote Sensing in Soil Mapping and Modeling)
Show Figures

Figure 1

17 pages, 1058 KiB  
Article
UAV-Mounted RIS-Aided Mobile Edge Computing System: A DDQN-Based Optimization Approach
by Min Wu, Shibing Zhu, Changqing Li, Jiao Zhu, Yudi Chen, Xiangyu Liu and Rui Liu
Drones 2024, 8(5), 184; https://doi.org/10.3390/drones8050184 - 7 May 2024
Cited by 6 | Viewed by 2669
Abstract
Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are increasingly employed in mobile edge computing (MEC) systems to flexibly modify the signal transmission environment. This is achieved through the active manipulation of the wireless channel facilitated by the mobile deployment of UAVs [...] Read more.
Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are increasingly employed in mobile edge computing (MEC) systems to flexibly modify the signal transmission environment. This is achieved through the active manipulation of the wireless channel facilitated by the mobile deployment of UAVs and the intelligent reflection of signals by RISs. However, these technologies are subject to inherent limitations such as the restricted range of UAVs and limited RIS coverage, which hinder their broader application. The integration of UAVs and RISs into UAV–RIS schemes presents a promising approach to surmounting these limitations by leveraging the strengths of both technologies. Motivated by the above observations, we contemplate a novel UAV–RIS-aided MEC system, wherein UAV–RIS plays a pivotal role in facilitating communication between terrestrial vehicle users and MEC servers. To address this challenging non-convex problem, we propose an energy-constrained approach to maximize the system’s energy efficiency based on a double-deep Q-network (DDQN), which is employed to realize joint control of the UAVs, passive beamforming, and resource allocation for MEC. Numerical results demonstrate that the proposed optimization scheme significantly enhances the system efficiency of the UAV–RIS-aided time division multiple access (TDMA) network. Full article
(This article belongs to the Special Issue Mobile Fog and Edge Computing in Drone Swarms)
Show Figures

Figure 1

19 pages, 1030 KiB  
Article
Energy Minimization in Reconfigurable Intelligent Surface-Assisted Unmanned Aerial Vehicle-Enabled Wireless Powered Mobile Edge Computing Systems with Rate-Splitting Multiple Access
by Jihyung Kim, Eunhye Hong, Jaemin Jung, Jinkyu Kang and Seongah Jeong
Drones 2023, 7(12), 688; https://doi.org/10.3390/drones7120688 - 25 Nov 2023
Cited by 4 | Viewed by 2686
Abstract
In this study, a reconfigurable intelligent surface (RIS)-assisted wireless-powered mobile edge computing (WP-MEC) system is proposed, where a single-antenna unmanned aerial vehicle (UAV)-mounted cloudlet provides offloading opportunities to K user equipments (UEs) with a single antenna, and the K UEs can harvest the [...] Read more.
In this study, a reconfigurable intelligent surface (RIS)-assisted wireless-powered mobile edge computing (WP-MEC) system is proposed, where a single-antenna unmanned aerial vehicle (UAV)-mounted cloudlet provides offloading opportunities to K user equipments (UEs) with a single antenna, and the K UEs can harvest the energy from the broadcast radio-frequency signals of the UAV. In addition, rate-splitting multiple access is used to provide offloading opportunities to multiple UEs for effective power control and high spectral efficiency. The aim of this paper is to minimize the total energy consumption by jointly optimizing the resource allocation in terms of time, power, computing frequency, and task load, along with the UAV trajectory and RIS phase-shift matrix. Since coupling issues between optimization variable designs are caused, however, an alternating optimization-based algorithm is developed. The performance of the proposed algorithm is verified via simulations and compared with the benchmark schemes of partial optimizations of resource allocation, path planning, and RIS phase design. The proposed algorithm exhibits high performance in WP-MEC systems with insufficient resources, e.g., achieving up to 40% energy reduction for a UAV with eight elements of RIS. Full article
(This article belongs to the Special Issue Advances in Green Communications and Networking for Drones)
Show Figures

Figure 1

17 pages, 1127 KiB  
Article
Interference Avoidance through Periodic UAV Scheduling in RIS-Aided UAV Cluster Communications
by Enzhi Zhou, Ziyue Liu, Ping Lan, Wei Xiao, Wei Yang and Xianhua Niu
Electronics 2023, 12(21), 4539; https://doi.org/10.3390/electronics12214539 - 4 Nov 2023
Cited by 2 | Viewed by 1775
Abstract
This article investigates the transmission of downlink control signals for multiple unmanned aerial vehicle (UAV) clusters in collaborative search and rescue operations in mountainous environments. In this scenario, a reconfigurable intelligent surface (RIS) mounted on the UAV is utilized to overcome obstacles between [...] Read more.
This article investigates the transmission of downlink control signals for multiple unmanned aerial vehicle (UAV) clusters in collaborative search and rescue operations in mountainous environments. In this scenario, a reconfigurable intelligent surface (RIS) mounted on the UAV is utilized to overcome obstacles between the ground base station (BS) and UAVs. By leveraging the fixed channel of the RIS to the BS, the line-of-sight (LoS) path characteristics of the air-to-air channel, and the position information of the UAV, the RIS forms a directional beam by adjusting the RIS coefficient, which points towards UAVs in the cluster. To ensure low delay in control signaling and UAV state transmission, we adopt semi-persistent scheduling (SPS), which allocates pre-specified periodic intervals to each UAV for the formation of corresponding RIS coefficients. The allocation of time slots is constrained by the transmission intervals required by different UAVs and the number of RISs available. We propose a time slot scheduling scheme for UAVs to reduce inter-cluster interference caused by RIS beams. The time slot allocation problem is formulated as a combinatorial optimization problem. To solve this problem, we first propose an intuitive greedy scheme called local interference minimization (LIM). Building upon the LIM scheme, we propose a rollout-based algorithm called rollout interference minimization (RIM). Through simulation, we compare the LIM and RIM schemes with the benchmark scheduling scheme. The results demonstrate that our proposed scheme significantly reduces interference between UAV clusters while satisfying the conditions of periodic transmission and RIS quantity constraints. Full article
Show Figures

Figure 1

18 pages, 1072 KiB  
Article
Distribution of Multi MmWave UAV Mounted RIS Using Budget Constraint Multi-Player MAB
by Ehab Mahmoud Mohamed, Mohammad Alnakhli, Sherief Hashima and Mohamed Abdel-Nasser
Electronics 2023, 12(1), 12; https://doi.org/10.3390/electronics12010012 - 20 Dec 2022
Cited by 16 | Viewed by 2531
Abstract
Millimeter wave (mmWave), reconfigurable intelligent surface (RIS), and unmanned aerial vehicles (UAVs) are considered vital technologies of future six-generation (6G) communication networks. In this paper, various UAV mounted RIS are distributed to support mmWave coverage over several hotspots where numerous users exist in [...] Read more.
Millimeter wave (mmWave), reconfigurable intelligent surface (RIS), and unmanned aerial vehicles (UAVs) are considered vital technologies of future six-generation (6G) communication networks. In this paper, various UAV mounted RIS are distributed to support mmWave coverage over several hotspots where numerous users exist in harsh blockage environment. UAVs should be spread among the hotspots to maximize their average achievable data rates while minimizing their hovering and flying energy consumptions. To efficiently address this non-polynomial time (NP) problem, it will be formulated as a centralized budget constraint multi-player multi-armed bandit (BCMP-MAB) game. In this formulation, UAVs will act as the players, the hotspots as the arms, and the achievable sum rates of the hotspots as the profit of the MAB game. This formulated MAB problem is different from the traditional one due to the added constraints of the limited budget of UAVs batteries as well as collision avoidance among UAVs, i.e., a hotspot should be covered by only one UAV at a time. Numerical analysis of different scenarios confirm the superior performance of the proposed BCMP-MAB algorithm over other benchmark schemes in terms of average sum rate and energy efficiency with comparable computational complexity and convergence rate. Full article
(This article belongs to the Special Issue Online Learning Aided Solutions for 6G Wireless Networks)
Show Figures

Figure 1

Back to TopTop