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Abstract: Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are increas-
ingly employed in mobile edge computing (MEC) systems to flexibly modify the signal transmission
environment. This is achieved through the active manipulation of the wireless channel facilitated
by the mobile deployment of UAVs and the intelligent reflection of signals by RISs. However, these
technologies are subject to inherent limitations such as the restricted range of UAVs and limited RIS
coverage, which hinder their broader application. The integration of UAVs and RISs into UAV–RIS
schemes presents a promising approach to surmounting these limitations by leveraging the strengths
of both technologies. Motivated by the above observations, we contemplate a novel UAV–RIS-aided
MEC system, wherein UAV–RIS plays a pivotal role in facilitating communication between terrestrial
vehicle users and MEC servers. To address this challenging non-convex problem, we propose an
energy-constrained approach to maximize the system’s energy efficiency based on a double-deep
Q-network (DDQN), which is employed to realize joint control of the UAVs, passive beamforming,
and resource allocation for MEC. Numerical results demonstrate that the proposed optimization
scheme significantly enhances the system efficiency of the UAV–RIS-aided time division multiple
access (TDMA) network.

Keywords: reconfigurable intelligent surfaces; mobile edge computing; double-deep Q-network;
time division multiple access

1. Introduction

In light of widespread mobile vehicle user adoption and the exponential growth of
Internet of Things (IoT) network traffic, mobile edge computing (MEC) has emerged as a
promising paradigm [1]. This is due to the fact that, on the one hand, MEC enables the
placement of computational resources and storage functions at the network edge to bring
data processing closer to the terminal, which iscrucial for performing computationally
intensive and latency-sensitive tasks [2]; on the other hand, as IoT devices proliferate and
become more prevalent, a centralized approach to data processing is no longer sufficient.
MEC offers a viable solution for next-generation Internet of Vehicle (IoV) deployments,
facilitating better communication and collaboration among various devices. However,
the effectiveness of MEC systems is limited by challenges in the offloading process. One
major challenge is potential congestion of the direct offloading link, which often results
in sub-optimal performance, compelling users to process tasks locally in order to meet
strict latency requirements. This situation is particularly unfavorable for mobile users with
limited resources. To overcome these limitations, various research efforts have focused on
improving channel quality in MEC systems. By utilizing UAVs as mobile platforms for MEC

Drones 2024, 8, 184. https://doi.org/10.3390/drones8050184 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8050184
https://doi.org/10.3390/drones8050184
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-9379-7714
https://orcid.org/0000-0001-5260-0794
https://orcid.org/0000-0001-8237-7861
https://orcid.org/0000-0003-3147-878X
https://doi.org/10.3390/drones8050184
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8050184?type=check_update&version=2


Drones 2024, 8, 184 2 of 17

servers, it becomes possible to actively manage the wireless channel and optimize signal
transmission conditions. The dynamic mobility of UAVs allows for strategic positioning,
thereby enhancing overall system performance [3]. This integration of UAVs and MEC
offers an efficient means of extending traditional MEC system capabilities.

1.1. Related Work and Motivation

The UAV-enabled MEC system serves as a flexible technological approach that can
effectively ensure full utilization of computational resources and significantly reduce
capital costs. Through the UAV-enabled MEC system, the UAV offloads time processing-
sensitive or computationally intensive tasks to the server in order to maximize the savings
of UAV battery resources and computational resources. Driven by the advantages of UAV-
enabled MEC, there have been a large number of contributions studying UAV-enabled
MEC systems, and many effective algorithms have been proposed based on different
optimization objectives. For instance, the authors of [4] investigated the energy efficiency
(EE) maximization problem concerning edge computing through optimization of resource
allocation and UAV trajectory design. Similar to the above content, the authors of [5]
designed a cooperative strategy for deploying multiple ground servers and a UAV mobile
server to achieve highly reliable edge computing services.

On the other hand, reconfigurable intelligent surfaces (RISs) consisting of a passive
reflective planar device have been recognized as a novel paradigm with the ability to
alter the signal propagation environment through low-cost implementations. An RIS
manipulates incoming signals [6], thereby altering the channel conditions of the UAV-
assisted MEC system and significantly improving spectrum utilization efficiency. RISs have
been proven by numerous research results to be potentially advantageous in improving
channel conditions and enhancing energy transfer in multicellular networks, which can
significantly improve the performance of UAV-enabled MEC systems.

Therefore, the integration of RIS into UAV-enabled MEC systems is considered a mutu-
ally beneficial strategy. According to a report in [7], the presence of RISs can eliminate up to
20% of the computational delay, demonstrating their potential impact on the performance of
UAV-enabled MEC systems. However, both UAVs and RISs face inherent limitations, such
as the limited endurance of UAVs and the fact that an RIS can only provide reflective gain
at half the range in space. To address these challenges, the concept of integrating RISs onto
UAVs to support ground edge computing communication, referred to as UAV-mounted
RIS schemes (UAV–RIS) [8], is emerging as a promising approach. The UAV–RIS archi-
tecture is a significant improvement over traditional UAV-enabled server schemes, where
information is reflected through RISs to a terrestrial MEC server for computation without
the need to change routing or rebuild the system. In addition, RIS units are typically much
lighter than MEC servers, reducing the onboard energy consumption of the UAV. More-
over, an RIS is only a two-dimensional plane, and is typically much lighter than an MEC
server [9], resulting in reduced onboard energy consumption for UAVs. The authors of [10]
mentioned the use of rate-splitting multiple-access (RSMA) technology to provide a more
robust offloading strategy in RIS-assisted MEC systems. In [11], the authors investigated
the optimization of system energy efficiency under an RIS–UAV-enabled MEC system using
successive convex approximation (SCA) and the Dinkelbach method. The authors of [12]
considered a UAV-enabled MEC system assisted by RIS with the optimization objective of
minimizing UAV energy consumption under a multitude of influencing factors, including
transmit power, RIS phase shift, resource allocation strategy, and more. In summary, in sce-
narios involving RIS-assisted MEC, RISs deployed on building facades prove effective only
for users within the frontal spatial sector. In contrast, when mounted on aerial platforms
such as UAVs, RISs exhibit superior omnidirectional beamforming capabilities for ground
users, providing more comprehensive and panoramic coverage [13].

From the above analysis, it is obvious that the integration of RIS-carrying UAVs into
the MEC system represents an indispensable and critical route to improving the overall
computational efficiency. However, because of the superimposed effects of multiple phase
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multiplications of the RIS involved, this is a high-dimensional problem with multiple opti-
mization objectives and represents a challenging task for conventional iterative algorithms.
Thanks to the great popularity of artificial intelligence (AI) in many fields, the introduc-
tion of this technique into wireless communications has become a recent research trend.
Among these, deep reinforcement learning (DRL) has emerged as a particularly powerful
tool for enhancing the performance of wireless networks in dynamic environments. DRL
can combine neural networks with powerful function-fitting capabilities and reinforcement
learning to optimize large-scale network operations without the need for massive amounts
of high-quality data for pretraining. Instead, the environment is modeled and rewards from
the environment are used as feedback to train the system. The authors of [14] considered
an optimization strategy for maximizing the long-term effectiveness of vehicular edge
computing networks using Q-learning and DRL frameworks. In [15], the authors utilized
an end-to-end DRL framework for offloading and allocating computational resources by
selecting the optimal edge servers.

Although various advanced techniques such as RISs, UAVs, and DRL have been suc-
cessfully applied in MEC systems, to the best of the authors’ knowledge there is still a gap
in the research of performance optimization strategies for MEC systems after integrating
all the above techniques together. In particular, for the extended DRL framework involving
computational offloading strategies, optimization of RIS phase-shift parameters is the focus
of our concern, and drives the research of this paper.

1.2. Contributions and Novelty

Building upon the comprehensive analysis provided above, we propose the integration
of an MEC system employing UAV-carried RISs. In the envisioned system, each UAV is
equipped with an RIS to serve ground users and MEC servers. Our primary objective is to
maximize computational offloading efficiency while considering the energy consumed by
the UAVs. To achieve this, we leverage the Double Deep Q-Network (DDQN) algorithm,
which offers several advantages for learning multiple actions. We introduce a DDQN-
based scheme aimed at maximizing computational offloading efficiency under various
constraints, simultaneously addressing trajectory optimization and phase shift problems.
The contributions of this setup include:

• First, in complex environments such as densely populated urban areas hosting large-
scale events, the line-of-sight link between terrestrial vehicle users (VUs) and the MEC
server may be weakened by obstacles. To overcome this challenge, we propose the
strategy of deploying RIS-carrying UAVs to assist users in offloading tasks. By reflect-
ing VU signals through the UAV–RIS system, they are able reach the ground MEC
servers effectively.

• Second, this computational offloading policy optimization problem can be categorized
as a mixed-integer nonlinear fractional programming problem. To tackle this, we
develop the DDQN-empowered algorithm, which aims to achieve the goal of maxi-
mizing energy efficiency. This algorithm offers low computational complexity while
allowing for easy scalability across various system configurations.

• Finally, the numerical results obtained from our experiments demonstrate significant
improvements in energy efficiency within the MEC system compared to other bench-
mark schemes. Furthermore, our proposed algorithm makes notable trade-offs in
trajectory optimization, enhancing the overall performance of the system.

The rest of this paper is organized as follows. Section 2 describes the considered MEC
system model and the formulation of the optimization problem in detail. In Section 3, we
focus on the computational efficiency problem of the DRL-based algorithm. In Section 4,
we present simulation results demonstrating the performance advantages of the proposed
DDQN framework. Finally, our conclusions are summarized in Section 5. For more concise
representation, symbols for several key system parameters are defined in Table 1.
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Table 1. Meaning of key symbols.

Symbol Meaning

hs[n] ∈ C1×M The channel gain coefficient from RIS to MEC server

hk[n] ∈ CM×1 The channel gain coefficient from k-th VU to RIS

q[n] The position of UAV at the n-th time slots

Θ[n] The RIS phase shift matrix at the n-th time slots

M The number of RIS reflective elements

K The number of ground vehicle users

co
k The aggregate offloaded tasks for k-th VU at the n-th time slots

cl
k The locally computed tasks for k-th VU at the n-th time slots

f o
k The CPU frequency for aggregate offloaded tasks

f l
k The CPU frequency for locally computed tasks

Eo
k The energy consumption for aggregate offloaded tasks

El
k The energy consumption for locally computed tasks

sk[n] The content scheduling variables at the k-th VU

2. System Model Description

The diagram in Figure 1 depicts the conceptual model of the UAV–RIS-aided MEC
system, incorporating several key components. Specifically, the system consists of K
terrestrial vehicle users (VUs), an MEC ground server, and a UAV equipped with an RIS.
This configuration enables the seamless integration of aerial and ground infrastructure to
support efficient and dynamic mobile edge computing operations. In this configuration,
the UAV–RIS plays a crucial role in facilitating edge computing services from the VUs
to the MEC terrestrial servers. This investigation occurs over a designated time period
T, which (without loss of generality) is segmented into N discrete time slots for the sake
of analysis, allowing for the development of policies and strategies that are adaptive to
changing environmental conditions and user demands.

We can make the assumption that all communication nodes are represented within a
3D Cartesian coordinate system, providing a standardized and consistent framework for
spatial representation and analysis [16]. In particular, the k-th VU and the MEC server can
be expressed as Lk = [xk, yk] and LM = [xM, yM], respectively. In addition, to maintain
dynamic balance during RIS-assisted communication, it can be assumed that the UAV
carrying the RIS only performs the reflection task at the same altitude HR [17]. Therefore,
the motion trajectory of the UAV–RIS within time span T at the n-th time slot can be
expressed as q[n] = [x[n], y[n], HR], n ∈ N. At the same time, we define the flight process
as follows:

v[n] =
q[n]− q[n− 1]

∆t
, ‖vmax‖ ≥ v[n], ∀n ∈ N, (1)

a[n] =
v[n]− v[n− 1]

∆t
, ‖amax‖ ≥ a[n], ∀n ∈ N, (2)



Drones 2024, 8, 184 5 of 17

where ∆t denotes the length of each time slot, vmax is the maximum flying speed, and
amax is the maximum acceleration. Additionally, it is worth noting that the UAV should be
connected to different fixed charging positions from both the starting and ending positions
for stable power control.

MEC server

RIS

UAV

Offloading link

Vehicle user

Figure 1. UAV–RIS-aided MEC system model.

2.1. Signal Transmission Model

Within the system model, we pragmatically consider that both the MEC ground
server and the VU are outfitted with omnidirectional antennas to establish a common
basis for signal propagation analysis. Meanwhile, the RIS is comprised of M = Mx ×My
reflecting elements, with Mx representing the number of elements along the x-axis and My
denoting the number of elements along the y-axis, thereby forming a rectangular array
plane. To describe the phase shift of the m-th element at the n-th time slot, we denote

it as θm[n] ∈ [0, 2π), m ∈ M ∆
= {1, . . . , M}, and Θ[n] = diag

(
ejθ1[n], ejθ2[n], . . . , ejθM [n]

)
,

which can be understood as the diagonal phase shift matrix for the RIS at the n-th time
slot. This configuration allows for precise control and manipulation of the phase shifts
across the RIS elements, enabling adaptive signal reflection and optimization within the
wireless environment.

In the scenario where the RIS-carrying UAV acts as an auxiliary communication service
in the air, it is reasonable to assume that there is a strong LoS link between the UAV–RIS
and the terrestrial VUs, including the link from the UAV–RIS to the MEC server. This
assumption is based on the fact that the UAV is positioned at a higher altitude, providing
a direct and unobstructed path for communication. As a result, it is justifiable to make
the assumption that the channels from the VU to the UAV–RIS and from the UAV–RIS
to the MEC server adhere to a quasi-static fast-fading LoS model. This model takes
into account the rapid fluctuations in signal strength caused by factors such as small-
scale fading and multipath propagation. By considering this, we can better analyze and
optimize the performance of the communication system by taking into account the dynamic
characteristics of the channel. The channel from the UAV–RIS to the MEC server, denoted
as hs[n] ∈ C1×M, can be mathematically expressed as

hs[n] = L[n]am
x [n]⊗ am

y [n], (3)

where the term L[n] =
√

G0d−αβ [n] denotes the path loss component (with G0 being the

channel gain), d[n] =
√
‖q[n]− LM‖2 + H2

R is the distance between the MEC ground
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server and the UAV-RIS at the n-th time slot, and αβ stands for the path loss exponent
associated with the LoS transmission. It is worth noting that the path loss component plays
a crucial role in determining the signal strength and the quality of the communication
link in the system by taking into account the channel gain, the distance between various
communication nodes, and the path loss characteristics due to LoS transmission:

am
x [n] = exp

[
0,−j

2π

λR
d cos φm[n] sin ϕm[n] , . . . ,

−j
2π

λR
(Mx − 1)d cos φm[n] sin ϕm[n]

]T
, (4)

am
y [n] = exp

[
0,−j

2π

λR
d sin φm[n] sin ϕm[n] , . . . ,

−j
2π

λR

(
My − 1

)
d sin φm[n] sin ϕm[n]

]T
, (5)

where φm[n] and ϕm[n] are the azimuth and elevation angles of the m-th element of the
RIS at the n-th time slot, and λR is the carrier frequency. Moreover, the link between the
k-th VU and the UAV–RIS can be denoted as hk[n], which is modeled in a similar way as
described above.

In our work, we consider the time-division multiple-access (TDMA) scheme for of-
floading the computing task. Put another way, it can be understood that only one user
communicates with the MEC server at each time slot, and we assume that sk[n] is the
content that the ground user needs to schedule at the n-th time slot. If the UAV carrying the
RIS is required to provide reflection services at the k-th VU, the demand can be expressed as

K

∑
k=1

sk[n] = 1, sk[n] ∈ {0, 1}, ∀k, ∀n. (6)

As a result, the achievable rate for the k-th VU can be defined as

Rk[n] = sk[n]Bklog2

1 +
pk

∣∣∣(hs[n])
H

Θ[n]hk[n]
∣∣∣2

σ2

, (7)

where Bk denotes the bandwidth, pk is the transmit power for the k-th VU, and σ2 means
the variance in the obeying noise distribution. Here, the average achievable rate for the k-th

VU throughout the entire computation duration T can be formulated as Rk =
1
N

N
∑

n=1
Rk[n].

2.2. Computational Offloading Model

In order to leverage the finer granularity of task partitioning and computational re-
sources, we have incorporated a strategy known as partial offloading into the system design.
This methodology involves dividing computational tasks into adaptable segments, enabling
a fraction of these tasks to be offloaded to the server for processing while retaining the re-
mainder for local execution. By implementing partial offloading, the system gains increased
flexibility in managing computational workloads and optimizing resource utilization. This
approach allows for a more nuanced distribution of tasks between local processing and
offloading to the server based on factors such as task complexity, latency requirements,
and available network resources. This flexibility enables efficient task scheduling, with
critical or latency-sensitive tasks offloaded for quicker processing and less time-sensitive
tasks executed locally to minimize delays [18]. The aggregate offloaded tasks and locally
computed tasks for the k-th VU across N time slots are denoted as co

k and cl
k. If Tk is assumed

to be the maximum tolerable delay for the k-th VU, this can be expressed as



Drones 2024, 8, 184 7 of 17

max

{
cl

kχk

f l
k

,
co

k χk

f o
k

+
co

k
Rk

}
≤ Tk, ∀k, (8)

where χk denotes the number of central processing unit (CPU) cycles required to process a
single bit of data from the k-th VU. In this context, f l

k denotes the fixed CPU frequency for
the k-th VU, while f o

k represents the CPU frequency allocated for processing the k-th VU
task at the MEC server. The foundation of this restriction rests on two core assumptions:
first, initiation of edge computation for the k-th VU is contingent upon the completion
of offloading all f l

k bits; second, the system leverages dynamic voltage and frequency
scaling (DVFS) techniques to dynamically allocate server resources. These sophisticated
techniques empower real-time adjustments in CPU voltage and frequency, optimizing
power consumption and performance in response to the prevailing workload conditions.

2.3. Energy Dissipation Model

The proposed UAV–RIS-aided MEC system model considers three key components
that contribute to the total energy dissipation across all time slots T. These include the
energy consumed during UAV flight, the energy required for user task offloading and local
execution of computational tasks, and the energy consumption of the edge computing
server. Thus, the energy consumption during the execution of the k-th VU edge computation
can be accurately modeled as

El
k = Tk pk + Υlχkcl

k

(
f l
k

)2
, ∀k, (9)

where Υl is the locally calculated conversion factor for the k-th VU. Furthermore, we define
Υo as the computed conversion factor for the MEC terrestrial server, which can provide
more details about the energy utilization pattern of the MEC terrestrial server and help to
target interventions. At this point, while the energy dissipation of the MEC ground server
at the k-th VU in the prespecified mode can be expressed as

Eo
k = Υoχkco

k ( f o
k )

2, ∀k, (10)

the final component of the proposed energy consumption model is focused on the UAV’s
energy consumption, which will account for the vast majority of the energy consumption
and can be expressed as Eu[n]. For this purpose, it is assumed that the proposed UAV is a
rotary-wing UAV and that its energy consumption model takes into account the thrust-to-
weight ratio, which is influenced by multiple factors such as acceleration and gravity during
actual flight. In particular, the energy consumption model for the UAV comprehensively
considers factors such as the weight of the UAV, its aerodynamic and mechanical efficiency,
and the power required to maintain altitude and perform maneuvers. Specific details of this
section can be found at [19]. Therefore, the energy dissipation model can be expressed as

ET = η
N

∑
n=1

Eu[n] +
K

∑
k=1

(
El

k + Eo
k

)
, (11)

where η denotes the weighting factor to strike a balance between these different components.
This is because the energy consumption of the UAV carrying the RIS for flight is much higher
compared to the computational losses and the energy consumption of the MEC ground
server. However, both the local VU computation and the server’s energy consumption are
important factors to consider.

2.4. Problem Formulation

In the proposed UAV–RIS-aided edge computing system, energy efficiency (EE) is
defined as the ratio of the total number of bits of computational tasks to the system energy
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consumption after performing as many computational services as possible under energy
constraints, which is provided by both local services and edge computing servers. Our main

objective is jointly optimizing user scheduling sk[n], the UAV trajectory Q ∆
= {q[n], n ∈ N},

and the RIS phase shifts to maximize the achievable rate in all required tasks. This opti-
mization problem can be modeled as

P0 :EE[n] = max
Q,S,Φ

K
∑

k=1

(
co

k + cl
k

)
ET

(12a)

s.t.C1 : 0 ≤ θm[n] < 2π, ∀n, ∀m, (12b)

C2 :
K

∑
k=1

f o
k ≤ FO, (12c)

C3 : Ik ≤ co
k, ∀k, (12d)

C4 : Equations (1) and (2), (12e)

C5 : xmin ≤ x[n] ≤ xmax, ∀n, (12f)

C6 : ymin ≤ y[n] ≤ ymax, ∀n. (12g)

where (12b) represents the phase shift constraint associated with each reflection element,
(12c) denotes the maximum tolerable CPU frequency of the MEC server, (12d) signifies
the minimum offload task threshold for the k-th user, and (12e) and (12f) indicate the
flight range of the UAV. The optimization problem described above presents a notable
challenge due to its mixed-integer nature. This characteristic makes it difficult to find an
optimal solution efficiently, as it requires exploring a complex and nonconvex search space.
Moreover, the dynamic nature of the scenario, with both the UAV and the onboard RIS
in motion, further complicates the situation, presenting a challenge for traditional opti-
mization algorithms. In response to these challenges, our approach involves leveraging the
DRL-enabled framework. Through the integration of DRL, the system gains the ability to
learn from its environment and make informed decisions, enabling it to navigate and tackle
the inherent complexities of the problem with adaptability and intelligence. This approach
empowers the agent to dynamically adjust its strategies based on real-time feedback and
environmental cues, leading to more effective and data-driven decision-making processes
that enhance overall performance and efficiency [20]. This adaptive framework enables the
agent to dynamically adapt to changing conditions, thereby enhancing the overall solution
of the optimization problem within the UAV–RIS-aided MEC system.

3. Proposed DDQN-Enabled Approach

Considering that problem P0 is a highly dynamic decision-making process, traditional
iterative algorithms must face the issue of multi-dimensionality of the variables to be
optimized. In this section, we first introduce the basic idea of the DDQN algorithm,
which allows the proposed optimization issue to be formulated as a Markov Decision
Process (MDP).

3.1. Preliminaries of DDQN

The DDQN algorithm is an improved version of the DGN algorithm based on Q-
learning framework for solving the problem of decision making decisions in uncertain
environments. Compared with the DQN algorithm, the DDQN algorithm focuses on
solving the overestimation problem of the latter by introducing an additional neural
network that changes the computation of the target value. The core idea of the DDQN
is to find the optimal action by utilizing two neural networks: the main neural network
Qπ

(
s(n), a(n); τe

)
and the target neural network Q′π

(
s(n), a(n); τt

)
. Among them, the main

neural network is used to calculate the Q-value of each action in the current state s(n), while
the target neural network is used to calculate the target Q-value. During each iteration
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of the training process, both the main neural network and the target neural network are
updated to improve the performance of the deep double Q-learning (DDQN) algorithm.
However, their roles differ in the computation of actions and target Q-values.

The main neural network is responsible for selecting the action to be taken based on the
current state. It takes the input state as an input and predicts the Q-values associated with
each possible action. This allows the DDQN algorithm to decide which action to choose
based on the highest predicted Q-value. On the other hand, the target neural network is
utilized to compute the target Q-value during the training process. It takes the next state as
an input and predicts the Q-values for all possible actions in that state. The target Q-value
is then calculated by selecting the action with the maximum Q-value from the target neural
network’s predictions. Therefore, the DDQN algorithm can overestimate the target Q-value
and improve the learning effect.

As illustrated in Figure 2, the UAV engages with the surrounding environment to
determine the current state s(n). Subsequently, it takes action a(n) based on the policy Π,
leading to the computation of the current reward r(n) and transitioning to the next state
s(n+1). The UAV records this decision sequence in the replay buffer D and randomly selects
the size of ζ samples from D to train the DNNs. The primary objective of training the
DNNs is to minimize the loss function associated with the learning process. The purpose
of training the DNNs is to minimize the loss function, which can be expressed as

L(τt) = E
[
yDDQN [n]−Q′π

(
s(n), a(n); τt

)]
, (13)

where yDDQN [n] denotes the output value of the target network. By utilizing the stored de-
cision sequences in the replay buffer, the UAV can improve its decision-making capabilities
over time through iterative training. The process of selecting random samples from the re-
play buffer enhances the diversity of training data, enabling the DNNs to generalize better
and avoid overfitting to specific scenarios. This random sampling strategy contributes to
the overall stability and effectiveness of the training process, leading to improved learning
outcomes and decision-making performance of the UAV. Therefore, only the method of
calculating the target value in the DQN algorithm is needed, which can be expressed as

yDQN [n]← R(n+1) + γmax
a

Q′π
(

s(n+1), a(n); τt

)
(14)

and modified to

yDDQN [n] = R(n+1) + Q
(

s(n+1), arg maxaQπ

(
s(n+1), a(n); τe

)
; τt

)
, (15)

where γ stands for the discount factor, τe represents the parameters of the evaluation net-
work Qπ

(
s(n), a(n); τe

)
, and τt represents the parameters of the target network

Qπ
′
(

s(n), a(n); τt

)
. The argmax(·) function denotes that the action withe the largest Q-

value is selected at the state s(n+1).
On the one hand, the traditional reinforcement learning algorithm selects actions using

a greedy algorithm, which selects the maximum action for a certain action value function
based on a fixed greedy value ε. At the beginning of training, the agent is unfamiliar with
the environment; if the value of ε is small, the agent is unable to effectively explore the
environment, and the excessive focus on utilization leads to under-exploration, while if the
value of ε is large, the agent still randomly selects the action despite sufficient exploration
of the environment, and is unable to efficiently select the optimal action, in which case over-
exploration leads to under-exploitation. To solve this problem, based on the above research
content, this paper suggests a dynamic ε greedy strategy to select optimal actions, which
can be expressed as shown below.
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π =

{
1− ε, a(n) = arg maxaQπ

(
s(n+1), a(n)

)
,

ε, randomized selection strategy
(16)
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Figure 2. The framework of the proposed DDQN-based optimization algorithm.

In selecting an action, an agent in this paper refers to a UAV randomly selecting
an action by interacting with the environment with a probability ε. On the other hand,
in the traditional deep reinforcement algorithm using uniform random sampling method
to draw experience samples, in the training process some of the more important experience
samples may be seldom used or stored in the experience replay memory buffer. Thus,
some low-value and useless experience samples will be reused, resulting in learning
inefficiency. To solve this problem, a prioritized experience playback method based on
importance sampling is designed. The basic idea is to combine random sampling with
sampling by priority, thereby prioritizing the sampling of experience samples with higher
value, with the higher the value leading to a higher probability of being sampled. Lower-
value experience samples still have a probability of being sampled, helping to prevent the
occurrence of overfitting.

The significance of experience samples is determined by evaluating the temporal
difference (TD-error) between the predicted value and the target value [21]. Experience
samples with larger TD-errors are assigned higher importance in the learning process,
indicating a greater need for learning from those particular samples. By prioritizing
experience samples based on their TD-errors, the learning algorithm focuses more on
those samples that diverge significantly from the expected values. This adaptive approach
ensures that the model allocates more attention to experiences that offer the most potential
for learning and improving overall performance. The probability P(n) of a sample sequence(

s(n), a(n), r(n), s(n+1)
)

being sampled can be denoted by

P(n) =
Pα

n

∑D Pα
D

, (17)

where D denotes the size of experience replay memory buffer and α ∈ [0, 1] is a parameter
used to regulate the priority of drawing samples. When the value of α tends to 0, the prob-
ability of choosing the largest P(n) is the highest, which prompts the agent to prefer the
action with the highest value. Here, ∑D Pα

D represents the sum of the weights calculated
for all possible actions; this is to normalize the probability distribution and ensure that the
sum of the probabilities of all actions is 1.

3.2. MDP Description

In this paper, the MDP specifically consists of a decision agent and four-tuples
〈S ,A,R, γ〉, where S , A, R, and γ ∈ [0, 1) represent the state space, action space, re-
ward function, and discount factor, respectively. In concrete terms, the state space, action
space, and reward function can be defined as follows.
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(1) State space: The designed state space can be denoted as s(n) ∈ S at the n-th time
slot, which includes the channel state information of the VUs–RIS hk[n], the RIS–MEC
server hs[n], the current position of the UAV q[n], and the RIS phase shift value θm[n]. This
can be expressed as

s(n) = {hk[n], hs[n], q[n], θm[n]}. (18)

(2) Action space: The DDQN-enabled framework at the n-th time slot features the
action space, denoted as a(n) ∈ A. The action space is composed of three distinct parts, each
with its own set of parameters. (1) The change of each reflection element about the phase
shift, denoted as ∆θm[n] ∈

(
− 5π

10 , 5π
10
)
, which ranges from

(
− 5π

10 , 5π
10
)
. (2) The direction of

movement of the UAV, defined as ∆qU [n] ∈ {(0, 0), (−1, 0), (1, 0), (0, 1), (0,−1)}, which
takes on one of five possible values (keep still, move left, move right, move forward, move
backward); by adjusting its position, the UAV can better serve the VU’s needs and optimize
the edge computation process. Finally, (3) the ratio of total to local task assignments
ξ[n] = co

k/cl
k. Thus, the action space can be expressed as

a(n) = {∆θm[n], ∆qU [n], ξ[n]}. (19)

More specifically, ξn can be generated by adopting hyperbolic tangent functions, which
can be expressed as

ξ(n) =
1
2

(
exp(x[n])− exp(−x[n])
exp(x[n]) + exp(−x[n])

+ 1
)

, (20)

where x[n] is the output of the activation function with respect to the corresponding selected
total to local task allocation ratio.

(3) Reward function: The determination of the reward functions is contingent upon
the present system state and the action executed during each time slot. Our objective in
this study is to maximize the total number of bits for numerous computational tasks under
UAV energy limitations while concurrently guaranteeing high-quality wireless services for
the virtual user at every time slot [22]. Thus, we invoke δ[n] to represent the VU’s level of
satisfaction, which can be expressed as

δ[n] =
{

1, ∑K
k=1 Rk[n] ≥ Rmin

k [n]
0, others

(21)

where Rmin
k [n] =

(
k · ck

l

)
/n denotes the minimum amount of the computation of the VT at

the n-th time slot. Here, if ck
l continues to grow larger, it is obvious that the edge computing

becomes inefficient. Based on the above, the reward function can be expressed as

R[n] =

{
EE[n], δ[n] = 1,
v · EE[n], δ[n] = 0

(22)

where v denotes the discount parameter for various scenarios. As an example, suppose that
if the energy constraints of the UAV are not satisfied it will be directly set to a negative value.
The DDQN-based active-passive beamforming and task resource allocation algorithm is
a comprehensive approach that involves interactions with the environment, experience
gathering, and network training. Algorithm 1 is an expanded version of the optimization
process to provide a more complete overview:
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Algorithm 1: The DDQN-based beamforming design and task allocation algorithm

1: Initialize experience replay memory buffer D;
2: Initialize τt and τe of the target and main neural networks Q(·) and Q′(·),

respectively, and set τe = τt;
3: Input: The relevant channel vector, the initial UAV position q[0] and the total

offloading tasks;
4: Output: Phase shift θm, UAV trajectory q[n],

and the ratio of total-local task assignments;
5: for episode = 1 do
6: Initially set the state as s(0) ∈ S ;
7: for t = 0, 1, 2, . . . T do
8: Obtain the current state s(n)

9: Choose an action a(n)

10: Compute the current reward r(n), and transfer to the next state s(n+1)

11: Store (s(n), a(n), R(n), s(n+1)) in D with maximal priority using Equation (19).
12: for j = 1 to ηr do
13: Randomly select size of d transitions
14: Calculate the loss function with Equation (15)
15: Update the main neural network weights τt
16: Update the target neural network weights τe ← τt
17: end for;
18: Choose the next action;
19: end for
20: end for

3.3. Convergence and Complexity Analysis

The success of the optimization algorithm of the DDQN hinges on the internal neu-
ral network’s capacity to effectively approximate nonlinear continuous functions given
a sufficiently large number of parameters to accurately determine the optimal Q value.
However, it is important to acknowledge that the suitability of the chosen DRL model for
the optimization problem is not guaranteed. It is important to note that the complexity
outlined here represents an upper bound and provides a comprehensive understanding
of the algorithm’s computational requirements; the actual runtime performance may vary
depending on factors such as hardware acceleration, parallelization techniques, and op-
timization strategies implemented during the algorithm’s implementation. In terms of
the fully connected layer model, the complexity analysis takes into account the number of
neurons in each layer and the number of layers in the network architecture. This includes
the operations involved in forward propagation, where input data are processed through
the network to generate predictions or feature representations, as well as the backward
propagation of errors during the learning process, which facilitates parameter updates.

The effectiveness of the DDQN optimization algorithm relies on the neural network’s
ability to flexibly model complex nonlinear relationships within the Q-learning framework.
This capability is crucial for accurately estimating the optimal Q-values, which are essential
for making informed decisions in dynamic and uncertain environments. A key considera-
tion is ensuring that the neural network architecture and parameterization are sufficiently
expressive to capture the intricacies of the underlying state–action value function.

Both the main and target networks in the DDQN are constructed as fully connected
layer models with hidden layers, and are characterized by a complexity ofO(W1W2), where
W1 and W2 denote the neuron counts in each layer. The training process of the neural
network entails utilizing backpropagation for parameter updates through the gradient
descent algorithm until convergence is achieved. The overall complexity of the learn-
ing procedure can be succinctly described as O(|S| · |A|), where |S| signifies the total
number of defined states influenced by factors such as channel states, UAV positions,
and selected actions. Additionally, |A| denotes the total number of predesigned actions
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determined by considerations such as UAV maneuver directions, RIS phase-shift variations,
and the task assignment ratio. This comprehensive analysis provides valuable insights into
the computational demands and intricacies of the DDQN framework, shedding light on
the neural network’s structural complexities and the computational requirements of the
training process.

4. Simulation and Analysis

This section involves the implementation of simulation experiments aimed at showcas-
ing the effectiveness of the proposed algorithm. Within the framework of optimizing system
energy efficiency, the modeling process prioritizes the utilization of each user’s achievable
rate as a constraint rather than the ultimate optimization objective. In the DDQN-based
optimization algorithm, we additionally consider the priority ordering. Realistically, it is
necessary to maintain equity and efficiency in the implementation of different mandates
under the assumption that each VU has an urgent task that is critical. The simulation
parameters are set as shown in Table 2. In addition, we set three baseline algorithms for
comparison with objective of maximizing the total system efficiency:

Benchmark 1—Heuristic scheme: In this scheme, the UAV carries the RIS along a
predetermined shortest path traversing each user node at a constant speed, at which point
only the reflected beamforming matrix Φ and task allocation ratio ξ[n] need to be optimized
under satisfying the requirement constraint.

Benchmark 2—Iterative scheme: In this scheme, we attempt to divide the problem P0
into two sub-problems, i.e., the joint optimization of Φ and task allocation ratio ξ[n] as well
as the optimization of the UAV trajectory Q. By repeatedly addressing these sub-problems
and incorporating the insights gained from each iteration, it becomes possible to gradually
converge towards a comprehensive and effective solution.

Benchmark 3—Scheme without RIS: In this scheme, we utilize a UAV-carrying server
for edge computing, which is the traditional approach for UAV-aided MEC systems. The
absence of a ground service computing device eliminates the need to introduce the RIS as
an additional reflective link.

Table 2. Simulation parameter settings.

System Parameter Value

Frequency f = 2 GHz

Channel bandwidth Bk = 1 MHz

Carrier wavelenghth λ = 750 MHz

Variance of the noise σ2 = −160 dBm

UAV fixed altitude HR = 150 m

UAV initial position q0 = [−100, 100]T

Power allocated to k-th VU pk = 0.1 W

Total offloaded tasks Tk = 50

Number of VUs 8

Service areas 200 m× 200 m

Number of CPU cycles χk = 103 cycles/bit

Number of RIS relfective elements M = 10× 10

Time slot length 1 s

In the initial stage of the algorithm, the RIS phase shift matrix is set as a unit matrix
and the UAV starts moving from a predetermined initial position. Throughout the training
process, the UAV needs to dynamically adjust the flight direction and RIS phase shift
according to the changing channel conditions and its own battery power. At each step,
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the optimal task allocation ratio is updated according to the reward feedback. In the DDQN
algorithm, the architectures of the main network and the target network are exactly the
identical; both consist of two layers, and the number of neurons contained in each layer
is determined by the action dimension. The deep neural network (DNN) in our setup is
trained with rectified linear units (ReLu) serving as the activation function and RMSProp
utilized as the optimizer. The learning rate for each DNN can be set according to relevant
experience as 1× 10−3. For the experience memory replay buffer D, we set the batch size
to 32 and configured the replay memory capacity at 6400 in order to effectively store and
leverage past experiences during the training process. For the simulations, we adopted
Python 3.7 and TensorFlow 2.4.1 to implement the optimal parameter finding process
within the DDQN algorithms.

Figure 3 shows the UAV trajectories under the various comparison algorithms pro-
posed at Tk = 100 s. It can be observed that there is a significant difference between them;
under the proposed DDQN optimization algorithm, the UAV carries the RIS as far as
possible to each user, then finally reaches the predefined focus. This achieves higher energy
efficiency, as no redundant paths are generated. On the other hand, the iterative algorithm
produces some distance redundancy because of real-time computational and other issues.
For the heuristic strategy, UAVs carrying RISs need to fly next to each other passing all VUs,
which inevitably consumes a lot of energy. For the paths that do not carry an RIS, some
redundant routes are generated because the UAV itself has to take on certain computational
services, which compromises on flight energy consumption and channel quality [23].

Figure 4 illustrates a comparative plot of the weighted EE with respect to the flight
time span after the trade-offs of the various algorithms. From this, it can be seen that the
proposed DDQN optimization algorithm reaches the optimum at about time 80 s, which
is because each VU sets its own tolerable delay, which achieves the trade-off between the
quality of service and the delay. However, as the flight time span extends, a noticeable
decline in the weighted EE of all algorithms becomes evident [24]. This diminishing trend
is primarily attributed to the imperative need to effectively utilize the diverse require-
ments of each VU. The continuous demand for resource optimization and adaptation to
the evolving conditions contributes to this observed decrease in weighted EE across all
evaluated algorithms.

MEC server

Initial

Finally

Figure 3. Comparison of trajectories under different algorithms.
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Figure 4. Schematic of weighted energy efficiency versus total time.

Figure 5 illustrates the effect of various learning rates on the average reward of the
proposed DDQN-empowered algorithm [25]. It is clear that different learning rates have
a significant impact on the performance of the DRL algorithm. The learning rate actually
controls how much the model parameters are updated in each iteration; either too high or
too low a learning rate may lead to unstable or poor training. Typically, a small learning rate
such as 0.0001 will make the model converge slower, but helps to avoid missing the optimal
solution by updating the parameters too much; on the contrary, a larger learning rate can
speed up the convergence, but may lead to fluctuation or unstable training process. Notably,
the DRL algorithm with a learning rate of 0.001 achieves the best performance, although this
may require a longer training time. Meanwhile, the convergence time with learning rate of
0.0001 and 0.00001 is worse compared to the performance when the learning rate is larger
(say, 0.1). This is due to the fact that too large a learning rate increases oscillations and
causes a sharp drop in performance. Therefore, in DRL-enabled optimization frameworks
it is very critical to choose an appropriate learning rate. By trying different values of the
learning rate, a balance can be found that allows the model to both converge quickly and
achieve better performance during training.

Figure 5. Schematic of learning rate versus average rewards.
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5. Conclusions

This paper introduces a novel system architecture wherein UAVs are equipped with
RISs for edge computation with the aim of enhancing the quality of VU offload links
and further optimizing the performance of an MEC system. Moreover, a sophisticated
optimization framework is proposed to jointly optimize RIS passive beamforming, UAV
trajectory planning, and resource allocation using DDQN, with the objective of maximizing
the trade-off between weighted energy efficiency and high-quality trajectory visualization.
The numerical results presented in this study showcase the significant advantages of lever-
aging the DRL algorithm for optimizing UAV–RIS-aided MEC systems. The results further
highlight the effectiveness of the proposed framework in achieving superior performance
compared to traditional optimization methods.
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