A UAV-Assisted STAR-RIS Network with a NOMA System
Abstract
:1. Introduction
- We jointly optimize the UAV’s flying altitude, antenna beamforming, and the phase shifts of the reflective elements, demonstrating significant performance gains from this integrated design.
- We formulate an SE maximization problem under constraints including the total power, UAV altitude, and coverage. To address its complexity, we adopt gradient descent and semidefinite relaxation (SDR) techniques and propose an efficient algorithm for its solution.
- Numerical results demonstrate that the proposed gradient descent-based algorithm significantly outperforms baseline schemes in terms of SE and BER.
2. System Model
2.1. Channel Modeling
2.2. Path Loss Exponent and Rician Factor Modeling
2.3. Received Signal and NOMA Decoding
3. Problem Formulation
4. Solution of the Problem
4.1. UAV Deployment Optimization
Algorithm 1 Gradient descent for UAV deployment optimization |
|
4.2. Beamforming and Phase Shift Optimization
Algorithm 2 Process for solving problem (9a) |
|
5. Numerical and Simulation Results
5.1. System Setup
5.2. Baseline Schemes
5.2.1. Baseline 1 Scheme (RIS)
5.2.2. Baseline 2 Scheme (Random Phase Shift)
5.3. Simulation Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Proof of Monotonicity
References
- Wu, Q.; Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef]
- Tang, W.; Chen, M.Z.; Chen, X.; Dai, J.Y.; Han, Y.; Di Renzo, M.; Zeng, Y.; Jin, S.; Cheng, Q.; Cui, T.J. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement. IEEE Trans. Wirel. Commun. 2020, 20, 421–439. [Google Scholar] [CrossRef]
- Guo, H.; Liang, Y.C.; Chen, J.; Larsson, E.G. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Trans. Wirel. Commun. 2020, 19, 3064–3076. [Google Scholar] [CrossRef]
- Liu, Y.; Duo, B.; Wu, Q.; Yuan, X.; Li, Y. Full-dimensional rate enhancement for UAV-enabled communications via intelligent omni-surface. IEEE Wirel. Commun. Lett. 2022, 11, 1955–1959. [Google Scholar] [CrossRef]
- Mu, X.; Liu, Y.; Guo, L.; Lin, J.; Schober, R. Simultaneously Transmitting and Reflecting (STAR) Aided Wireless Communications. IEEE Trans. Wirel. Commun. 2022, 21, 3083–3098. [Google Scholar] [CrossRef]
- Lei, J.; Zhang, T.; Mu, X.; Liu, Y. NOMA for STAR-RIS Assisted UAV Networks. IEEE Trans. Commun. 2024, 72, 1732–1745. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, Y.; Choi, J.; Sun, Q.; Elkashlan, M.; Chih-Lin, I.; Poor, H.V. Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun. Mag. 2017, 55, 185–191. [Google Scholar] [CrossRef]
- Su, Y.; Pang, X.; Lu, W.; Zhao, N.; Wang, X.; Nallanathan, A. Joint Location and Beamforming Optimization for STAR-RIS Aided NOMA-UAV Networks. IEEE Trans. Veh. Technol. 2023, 72, 11023–11028. [Google Scholar] [CrossRef]
- Wang, P.; Wang, H.; Fu, Y. Average Rate Maximization for Mobile STAR-RIS-Aided NOMA System. IEEE Commun. Lett. 2023, 27, 1362–1366. [Google Scholar] [CrossRef]
- Lei, J.; Zhang, T.; Liu, Y. Hybrid NOMA for STAR-RIS Enhanced Communication. IEEE Trans. Veh. Technol. 2024, 73, 1497–1502. [Google Scholar] [CrossRef]
- Zuo, J.; Liu, Y.; Ding, Z.; Song, L.; Poor, H.V. Joint Design for Simultaneously Transmitting and Reflecting (STAR) RIS Assisted NOMA Systems. IEEE Trans. Wirel. Commun. 2023, 22, 611–626. [Google Scholar] [CrossRef]
- Nasir, A.A.; Tuan, H.D.; Duong, T.Q.; Poor, H.V. UAV-Enabled Communication Using NOMA. IEEE Trans. Commun. 2019, 67, 5126–5138. [Google Scholar] [CrossRef]
- Iskandar; Shigeru, S. Channel characterization and performance evaluation of mobile communication employing stratospheric platforms. IEICE Trans. Commun. 2006, 89, 937–944. [Google Scholar] [CrossRef]
- Azari, M.M.; Rosas, F.; Chen, K.C.; Pollin, S. Ultra Reliable UAV Communication Using Altitude and Cooperation Diversity. IEEE Trans. Commun. 2018, 66, 330–344. [Google Scholar] [CrossRef]
- Al-Hourani, A.; Kandeepan, S.; Lardner, S. Optimal LAP altitude for maximum coverage. IEEE Wirel. Commun. Lett. 2014, 3, 569–572. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, Y.; Mu, X.; Cai, K.; Liu, Y.; Hanzo, L. Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface (STAR-RIS) Assisted UAV Communications. IEEE J. Sel. Areas Commun. 2022, 40, 3041–3056. [Google Scholar] [CrossRef]
- Wei, X.; Al-Obiedollah, H.; Cumanan, K.; Ding, Z.; Dobre, O.A. Energy Efficiency Maximization for Hybrid TDMA-NOMA System With Opportunistic Time Assignment. IEEE Trans. Veh. Technol. 2022, 71, 8561–8573. [Google Scholar] [CrossRef]
- Tse, D.; Viswanath, P. Fundamentals of Wireless Communication; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network: Joint Active and Passive Beamforming Design. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
Ref. and the Proposed Scheme | RIS Type | NOMA Type | UAV Type | Channel Model | Mathematical Approach |
---|---|---|---|---|---|
[11] | STAR-RIS | Hybrid NOMA | No UAV | Rayleigh fading | Alternating optimization |
[12] | STAR-RIS | NOMA | No UAV | Rician fading | Successive convex approximation and sequential constraint relaxation |
[7] | RIS | NOMA | Fix UAV | Rician fading | Lagrange relaxation and gradient descent |
[13] | No RIS | NOMA | UAV can alter its altitude | Rician fading | Path-following algorithms |
The proposed scheme | STAR-RIS | NOMA | UAV can alter its altitude | Rician fading | Gradient descent and semidefinite relaxation |
Description of Parameter | Parameter | Value |
---|---|---|
Path loss exponent for | , | 2.2 |
Path loss exponent for | , | 3.5 |
Path loss exponent for | 2.8 | |
Path loss exponent for | 2.2 | |
Rician factor for | , | 15 dB |
Rician factor for | , | 5 dB |
Rician factor for | 15 dB | |
Rician factor for | 10 dB | |
Path loss at 1 meter | −30 dB | |
Maximal height of UAV | 100 m | |
Minimal height of UAV | 10 m | |
Distance between U1/U2 and O point | L | 10 m |
BS position | ||
U1 position | ||
U2 position | ||
Number of antennas in BS | N | 2 |
Power coefficient of the U1 | 0.3 | |
Power coefficient of the U2 | 0.7 | |
Transmission coefficients | 0.5 | |
Reflection coefficients | 0.5 | |
Learning rate | 0.1 | |
Convergence condition | ||
Maximum number of iterations | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, J.; Peng, Y.; Mirza, M.M.; AL-Hazemi, F. A UAV-Assisted STAR-RIS Network with a NOMA System. Mathematics 2025, 13, 2063. https://doi.org/10.3390/math13132063
Lan J, Peng Y, Mirza MM, AL-Hazemi F. A UAV-Assisted STAR-RIS Network with a NOMA System. Mathematics. 2025; 13(13):2063. https://doi.org/10.3390/math13132063
Chicago/Turabian StyleLan, Jiyin, Yuyang Peng, Mohammad Meraj Mirza, and Fawaz AL-Hazemi. 2025. "A UAV-Assisted STAR-RIS Network with a NOMA System" Mathematics 13, no. 13: 2063. https://doi.org/10.3390/math13132063
APA StyleLan, J., Peng, Y., Mirza, M. M., & AL-Hazemi, F. (2025). A UAV-Assisted STAR-RIS Network with a NOMA System. Mathematics, 13(13), 2063. https://doi.org/10.3390/math13132063