Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Tuotuo River Basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4948 KiB  
Article
The Evolution of Runoff Processes in the Source Region of the Yangtze River Under Future Climate Change
by Nana Zhang, Peng Jiang, Bin Yang, Changhai Tan, Wence Sun, Qin Ju, Simin Qu, Kunqi Ding, Jingjing Qin and Zhongbo Yu
Atmosphere 2025, 16(6), 640; https://doi.org/10.3390/atmos16060640 - 24 May 2025
Viewed by 393
Abstract
Climate change has intensified the melting of glaciers and permafrost in high-altitude cold regions, leading to more frequent extreme hydrological events. This has caused significant variations in the spatiotemporal distribution of meltwater runoff from the headwater cryosphere, posing a major challenge to regional [...] Read more.
Climate change has intensified the melting of glaciers and permafrost in high-altitude cold regions, leading to more frequent extreme hydrological events. This has caused significant variations in the spatiotemporal distribution of meltwater runoff from the headwater cryosphere, posing a major challenge to regional water security. In this study, the HBV hydrological model was set up and driven by CMIP6 global climate model outputs to investigate the multi-scale temporal variations of runoff under different climate change scenarios in the Tuotuo River Basin (TRB) within the source region of the Yangtze River (SRYR). The results suggest that the TRB will undergo significant warming and wetting in the future, with increasing precipitation primarily occurring from May to October and a notable rise in annual temperature. Both temperature and precipitation trends intensify under more extreme climate scenarios. Under all climate scenarios, annual runoff generally exhibits an upward trend, except under the SSP1-2.6 scenario, where a slight decline in total runoff is projected for the late 21st century (2061–2090). The increase in total runoff is primarily concentrated between May and October, driven by enhanced rainfall and meltwater contributions, while snowmelt runoff also shows an increase, but accounts for a smaller percentage of the total runoff and has a smaller impact on the total runoff. Precipitation is the primary driver of annual runoff depth changes, with temperature effects varying by scenario and period. Under high emissions, intensified warming and glacier melt amplify runoff, while low emissions show stable warming with precipitation dominating runoff changes. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

15 pages, 1077 KiB  
Technical Note
Quantifying Annual Glacier Mass Change and Its Influence on the Runoff of the Tuotuo River
by Lin Liu, Xueyu Zhang and Zhimin Zhang
Remote Sens. 2024, 16(20), 3898; https://doi.org/10.3390/rs16203898 - 20 Oct 2024
Viewed by 990
Abstract
Glacier meltwater is an indispensable water supply for billions of people living in the catchments of major Asian rivers. However, the role of glaciers on river runoff regulation is seldom investigated due to the lack of annual glacier mass balance observation. In this [...] Read more.
Glacier meltwater is an indispensable water supply for billions of people living in the catchments of major Asian rivers. However, the role of glaciers on river runoff regulation is seldom investigated due to the lack of annual glacier mass balance observation. In this study, we employed an albedo-based model with a daily land surface albedo dataset to derive the annual glacier mass balance over the Tuotuo River Basin (TRB). During 2000–2022, an annual glacier mass balance range of −0.89 ± 0.08 to 0.11 ± 0.11 m w.e. was estimated. By comparing with river runoff records from the hydrometric station, the contribution of glacier mass change to river runoff was calculated to be 0.00–31.14% for the studied period, with a mean value of 9.97%. Moreover, we found that the mean contribution in drought years is 20.07%, which is approximately five times that in wet years (4.30%) and twice that in average years (9.49%). Therefore, our results verify that mountain glaciers act as a significant buffer against drought in the TRB, at least during the 2000–2022 period. Full article
Show Figures

Figure 1

19 pages, 22184 KiB  
Article
Evaluating Permafrost Degradation in the Tuotuo River Basin by MT-InSAR and LSTM Methods
by Ping Zhou, Weichao Liu, Xuefei Zhang and Jing Wang
Sensors 2023, 23(3), 1215; https://doi.org/10.3390/s23031215 - 20 Jan 2023
Cited by 9 | Viewed by 2753
Abstract
Permafrost degradation can significantly affect vegetation, infrastructure, and sustainable development on the Qinghai-Tibet Plateau (QTP). The permafrost on the QTP faces a risk of widespread degradation due to climate change and ecosystem disturbances; thus, monitoring its changes is critical. In this study, we [...] Read more.
Permafrost degradation can significantly affect vegetation, infrastructure, and sustainable development on the Qinghai-Tibet Plateau (QTP). The permafrost on the QTP faces a risk of widespread degradation due to climate change and ecosystem disturbances; thus, monitoring its changes is critical. In this study, we conducted a permafrost surface deformation prediction over the Tuotuo River tributary watershed in the southwestern part of the QTP using the Long Short-Term Memory model (LSTM). The LSTM model was applied to the deformation information derived from a time series of Multi-Temporal Interferometry Synthetic Aperture Radar (MT-InSAR). First, we designed a quadtree segmentation-based Small BAseline Subset (SBAS) to monitor the seasonal permafrost deformation from March 2017 to April 2022. Then, the types of frozen soil were classified using the spatio-temporal deformation information and the temperature at the top of the permafrost. Finally, the time-series deformation trends of different types of permafrost were predicted using the LSTM model. The results showed that the deformation rates in the Tuotuo River Basin ranged between −80 to 60 mm/yr. Permafrost, seasonally frozen ground, and potentially degraded permafrost covered 7572.23, 900.87, and 921.70 km2, respectively. The LSTM model achieved high precision for frozen soil deformation prediction at the point scale, with a root mean square error of 4.457 mm and mean absolute error of 3.421 mm. The results demonstrated that deformation monitoring and prediction using MT-InSAR technology integrated with the LSTM model can be used to accurately identify types of permafrost over a large region and quantitatively evaluate its degradation trends. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

21 pages, 7302 KiB  
Article
Retrieving Soil Moisture in the Permafrost Environment by Sentinel-1/2 Temporal Data on the Qinghai–Tibet Plateau
by Zhibin Li, Lin Zhao, Lingxiao Wang, Defu Zou, Guangyue Liu, Guojie Hu, Erji Du, Yao Xiao, Shibo Liu, Huayun Zhou, Zanpin Xing, Chong Wang, Jianting Zhao, Yueli Chen, Yongping Qiao and Jianzong Shi
Remote Sens. 2022, 14(23), 5966; https://doi.org/10.3390/rs14235966 - 25 Nov 2022
Cited by 5 | Viewed by 3076
Abstract
Soil moisture (SM) products presently available in permafrost regions, especially on the Qinghai–Tibet Plateau (QTP), hardly meet the demands of evaluating and modeling climatic, hydrological, and ecological processes, due to their significant bias and low spatial resolution. This study developed an algorithm to [...] Read more.
Soil moisture (SM) products presently available in permafrost regions, especially on the Qinghai–Tibet Plateau (QTP), hardly meet the demands of evaluating and modeling climatic, hydrological, and ecological processes, due to their significant bias and low spatial resolution. This study developed an algorithm to generate high-spatial-resolution SM during the thawing season using Sentinel-1 (S1) and Sentinel-2 (S2) temporal data in the permafrost environment. This algorithm utilizes the seasonal backscatter differences to reduce the effect of surface roughness and uses the normalized difference vegetation index (NDVI) and the normalized difference moisture index (NDMI) to characterize vegetation contribution. Then, the SM map with a grid spacing of 50 m × 50 m in the hinterland of the QTP with an area of 505 km × 246 km was generated. The results were independently validated based on in situ data from active layer monitoring sites. It shows that this algorithm can retrieve SM well in the study area. The coefficient of determination (R2) and root-mean-square error (RMSE) are 0.82 and 0.06 m3/m3, respectively. This study analyzed the SM distribution of different vegetation types: the alpine swamp meadow had the largest SM of 0.26 m3/m3, followed by the alpine meadow (0.23), alpine steppe (0.2), and alpine desert (0.16), taking the Tuotuo River basin as an example. We also found a significantly negative correlation between the coefficient of variation (CV) and SM in the permafrost area, and the variability of SM is higher in drier environments and lower in wetter environments. The comparison with ERA5-Land, GLDAS, and ESA CCI showed that the proposed method can provide more spatial details and achieve better performance in permafrost areas on QTP. The results also indicated that the developed algorithm has the potential to be applied in the entire permafrost regions on the QTP. Full article
Show Figures

Figure 1

19 pages, 3855 KiB  
Article
Assessment on the Effect of Climate Change on Streamflow in the Source Region of the Yangtze River, China
by Huanqing Bian, Haishen Lü, Ali M. Sadeghi, Yonghua Zhu, Zhongbo Yu, Fen Ouyang, Jianbin Su and Rensheng Chen
Water 2017, 9(1), 70; https://doi.org/10.3390/w9010070 - 23 Jan 2017
Cited by 27 | Viewed by 8220
Abstract
Tuotuo River basin, known as the source region of the Yangtze River, is the key area where the impact of climate change has been observed on many of the hydrological processes of this central region of the Tibetan Plateau. In this study, we [...] Read more.
Tuotuo River basin, known as the source region of the Yangtze River, is the key area where the impact of climate change has been observed on many of the hydrological processes of this central region of the Tibetan Plateau. In this study, we examined six Global Climate Models (GCMs) under three Representative Concentration Pathways (RCPs) scenarios. First, the already impacted climate change was analyzed, based on the historical data available and then, the simulation results of the GCMs and RCPs were used for future scenario assessments. Results indicated that the annual mean temperature will likely be increased, ranging from −0.66 °C to 6.68 °C during the three future prediction periods (2020s, 2050s and 2080s), while the change in the annual precipitation ranged from −1.18% to 66.14%. Then, a well-known distributed hydrological soil vegetation model (DHSVM) was utilized to evaluate the effects of future climate change on the streamflow dynamics. The seasonal mean streamflows, predicted by the six GCMs and the three RCPs scenarios, were also shown to likely increase, ranging from −0.52% to 22.58%. Watershed managers and regulators can use the findings from this study to better implement their conservation practices in the face of climate change. Full article
Show Figures

Figure 1

Back to TopTop