Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Tsuji–Trost reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7663 KiB  
Article
Preparation and Characterization of Poly(acrylic acid-co-vinyl imidazole) Hydrogel-Supported Palladium Catalyst for Tsuji–Trost and Suzuki Reactions in Aqueous Media
by Huijun Song, Amatjan Sawut, Rena Simayi and Yuqi Sun
Gels 2024, 10(12), 758; https://doi.org/10.3390/gels10120758 - 23 Nov 2024
Cited by 2 | Viewed by 1102
Abstract
In this study, a novel polyacrylate-co-vinyl imidazole hydrogel-supported palladium (Pd) catalyst (P(AA-co-VI)@Pd) was prepared through heat-initiated polymerization, starting with the formation of a complex between vinyl imidazole and palladium chloride, followed by the addition of 75% neutralized acrylic acid (AA), crosslinking agent, and [...] Read more.
In this study, a novel polyacrylate-co-vinyl imidazole hydrogel-supported palladium (Pd) catalyst (P(AA-co-VI)@Pd) was prepared through heat-initiated polymerization, starting with the formation of a complex between vinyl imidazole and palladium chloride, followed by the addition of 75% neutralized acrylic acid (AA), crosslinking agent, and initiator. The structure and morphology of the catalyst were characterized using ICP-OES, SEM, EDX, Mapping, FT-IR, TGA, XRD, XPS and TEM techniques. It was confirmed that the catalyst exhibited excellent compatibility with water solvent and uniform distribution of Pd. The P(AA-co-VI)@Pd hydrogel catalyst demonstrated remarkable catalytic activity and ease of separation. Notably, in a Tsuji–Trost reaction, employing water as the solvent, it achieved a conversion rate as high as 94% at very low catalyst dosages, indicating its superior catalytic performance. Moreover, after six consecutive cycles, the catalyst maintained good activity and structural stability, highlighting its exceptional reusability and environmental friendliness. Furthermore, the outstanding efficiency of the catalyst was also observed in a Suzuki coupling reaction where both conversion rate and yield reached 100% and 99%, respectively, within just one hour reaction time, thus further validating its universality and efficacy across various chemical reactions. Full article
(This article belongs to the Special Issue Gel-Based Materials: Preparations and Characterization (2nd Edition))
Show Figures

Graphical abstract

16 pages, 2112 KiB  
Article
Palladium-Catalyzed Tsuji–Trost-Type Reaction of 3-Indolylmethylacetates with O, and S Soft Nucleophiles
by Antonia Iazzetti, Antonio Arcadi, Marco Chiarini, Giancarlo Fabrizi, Antonella Goggiamani, Federico Marrone, Andrea Serraiocco and Roberta Zoppoli
Molecules 2024, 29(14), 3434; https://doi.org/10.3390/molecules29143434 - 22 Jul 2024
Viewed by 1267
Abstract
The chemical valorization of widespread molecules in renewable sources is a field of research widely investigated in the last decades. In this context, we envisaged that indole-3-carbinol, present in different Cruciferae plants, could be a readily available building block for the synthesis of [...] Read more.
The chemical valorization of widespread molecules in renewable sources is a field of research widely investigated in the last decades. In this context, we envisaged that indole-3-carbinol, present in different Cruciferae plants, could be a readily available building block for the synthesis of various classes of indoles through a palladium-catalyzed Tsuji–Trost-type reaction with O and S soft nucleophiles. The regiochemical outcome of this high-yielding functionalization shows that the nucleophilic substitution occurs only at the benzylic position. Interestingly, with this protocol, the sulfonyl unit could be appended to the indole nucleus, providing convenient access to new classes of molecules with potential bioactivity. Full article
(This article belongs to the Special Issue New Metal Catalysts for Sustainable Chemistry)
Show Figures

Figure 1

22 pages, 2555 KiB  
Article
Catalytic Enantioselective Synthesis of N-C Axially Chiral N-(2,6-Disubstituted-phenyl)sulfonamides through Chiral Pd-Catalyzed N-Allylation
by Sota Fukasawa, Tatsuya Toyoda, Ryohei Kasahara, Chisato Nakamura, Yuuki Kikuchi, Akiko Hori, Gary J. Richards and Osamu Kitagawa
Molecules 2022, 27(22), 7819; https://doi.org/10.3390/molecules27227819 - 13 Nov 2022
Cited by 2 | Viewed by 2619
Abstract
Recently, catalytic enantioselective syntheses of N-C axially chiral compounds have been reported by many groups. Most N-C axially chiral compounds prepared through a catalytic asymmetric reaction possess carboxamide or nitrogen-containing aromatic heterocycle skeletons. On the other hand, although N-C axially chiral sulfonamide derivatives [...] Read more.
Recently, catalytic enantioselective syntheses of N-C axially chiral compounds have been reported by many groups. Most N-C axially chiral compounds prepared through a catalytic asymmetric reaction possess carboxamide or nitrogen-containing aromatic heterocycle skeletons. On the other hand, although N-C axially chiral sulfonamide derivatives are known, their catalytic enantioselective synthesis is relatively underexplored. We found that the reaction (Tsuji–Trost allylation) of allyl acetate with secondary sulfonamides bearing a 2-arylethynyl-6-methylphenyl group on the nitrogen atom proceeds with good enantioselectivity (up to 92% ee) in the presence of (S,S)-Trost ligand-(allyl-PdCl)2 catalyst, affording rotationally stable N-C axially chiral N-allylated sulfonamides. Furthermore, the absolute stereochemistry of the major enantiomer was determined by X-ray single crystal structural analysis and the origin of the enantioselectivity was considered. Full article
(This article belongs to the Special Issue Atroposelective Synthesis of Novel Axially Chiral Molecules)
Show Figures

Graphical abstract

32 pages, 13065 KiB  
Review
Advanced Application of Planar Chiral Heterocyclic Ferrocenes
by Alexandra A. Musikhina, Polina O. Serebrennikova, Olga N. Zabelina, Irina A. Utepova and Oleg N. Chupakhin
Inorganics 2022, 10(10), 152; https://doi.org/10.3390/inorganics10100152 - 23 Sep 2022
Cited by 5 | Viewed by 2544
Abstract
This manuscript is reviewing the superior catalytic activity and selectivity of ferrocene ligands in a wide range of reactions: reduction of ketones, hydrogenation of olefins, hydroboration, cycloaddition, enantioselective synthesis of biaryls, Tsuji–Trost allylation. Moreover, the correlation between a ligand structure and its catalytic [...] Read more.
This manuscript is reviewing the superior catalytic activity and selectivity of ferrocene ligands in a wide range of reactions: reduction of ketones, hydrogenation of olefins, hydroboration, cycloaddition, enantioselective synthesis of biaryls, Tsuji–Trost allylation. Moreover, the correlation between a ligand structure and its catalytic activity is discussed in this review. Full article
Show Figures

Graphical abstract

15 pages, 30935 KiB  
Article
A TCF-Based Carbon Monoxide NIR-Probe without the Interference of BSA and Its Application in Living Cells
by Yingxu Wu, Xiaojing Deng, Lan Ye, Wei Zhang, Hu Xu and Boyu Zhang
Molecules 2022, 27(13), 4155; https://doi.org/10.3390/molecules27134155 - 28 Jun 2022
Cited by 4 | Viewed by 2683
Abstract
As toxic gaseous pollution, carbon monoxide (CO) plays an essential role in many pathological and physiological processes, well-known as the third gasotransmitter. Owning to the reducibility of CO, the Pd0-mediated Tsuji-Trost reaction has drawn much attention in CO detection in vitro [...] Read more.
As toxic gaseous pollution, carbon monoxide (CO) plays an essential role in many pathological and physiological processes, well-known as the third gasotransmitter. Owning to the reducibility of CO, the Pd0-mediated Tsuji-Trost reaction has drawn much attention in CO detection in vitro and in vivo, using allyl ester and allyl ether caged fluorophores as probes and PdCl2 as co-probes. Because of its higher decaging reactivity than allyl ether in the Pd0-mediated Tsuji-Trost reaction, the allyl ester group is more popular in CO probe design. However, during the application of allyl ester caged probes, it was found that bovine serum albumin (BSA) in the fetal bovine serum (FBS), an irreplaceable nutrient in cell culture media, could hydrolyze the allyl ester bond, and thus give erroneous imaging results. In this work, dicyanomethylenedihydrofuran (TCF) and dicyanoisophorone (DCI) were selected as electron acceptors for constructing near-infrared-emission fluorophores with electron donor phenolic OH. An allyl ester and allyl ether group were installed onto TCF-OH and DCI-OH, constructing four potential CO fluorescent probes, TCF-ester, TCF-ether, DCI-ester, and DCI-ether. Our data revealed that ester bonds of TCF-ester and DCI-ester could completely hydrolyze in 20 min, but ether bonds in TCF-ether and DCI-ether tolerate the hydrolysis of BSA and no released fluorescence was observed even up to 2 h. Moreover, passing through the screen, it was concluded that TCF-ether is superior to DCI-ether due to its higher reactivity in a Pd0-mediated Tsuji-Trost reaction. Also, the large stokes shift of TCF-OH, absorption and emission at 408 nm and 618 nm respectively, make TCF-ether desirable for fluorescent imaging because of differentiating signals from the excitation light source. Lastly, TCF-ether has been successfully applied to the detection of CO in H9C2 cells. Full article
(This article belongs to the Special Issue Stimuli-Responsive Molecules for Biological Applications)
Show Figures

Figure 1

11 pages, 2927 KiB  
Article
New Nitrogen, Sulfur-, and Selenium-Donating Ligands Derived from Chiral Pyridine Amino Alcohols. Synthesis and Catalytic Activity in Asymmetric Allylic Alkylation
by Marzena Wosińska-Hrydczuk and Jacek Skarżewski
Molecules 2021, 26(12), 3493; https://doi.org/10.3390/molecules26123493 - 8 Jun 2021
Cited by 7 | Viewed by 3098
Abstract
Although many chiral ligands for asymmetric catalysis have been developed, there is still a need for new structures allowing the modular approach. Recently, easy synthesis of chiral pyridine-containing β-amino alcohols has been elaborated by opening respective epoxides with enantiomeric 1-phenylethylamine. This paper reports [...] Read more.
Although many chiral ligands for asymmetric catalysis have been developed, there is still a need for new structures allowing the modular approach. Recently, easy synthesis of chiral pyridine-containing β-amino alcohols has been elaborated by opening respective epoxides with enantiomeric 1-phenylethylamine. This paper reports the synthetic transformation of β-amino alcohols into the new complexing pyridine-containing seleno- and thioethers. The amino alcohols were effectively converted to cyclic sulfonamidates, which were reacted with thiolates or phenyl selenide nucleophile. The reaction was diastereoselective, and its outcome depended on the configuration at the substitution center. The problem was discussed considering DFT optimized structures of both diastereomeric sulfonamidates. New amino-aldimine ligands were also synthesized from chiral pyridine-containing diamines. Nine new chiral ligands were tested in the Tsuji-Trost allylic alkylation resulting in the enantiomerically enriched product in up to 75% ee. The observed stereochemical induction agrees with the prevailing nucleophilic attack at the allylic carbon laying opposite to the complexing nitrogen of pyridine in η3-allylic intermediate complexes. Full article
(This article belongs to the Special Issue In Honor of the 80th Birthday of Professor Janusz Jurczak)
Show Figures

Graphical abstract

10 pages, 3447 KiB  
Article
Chiral Aziridine Sulfide N(sp3),S-Ligands for Metal-Catalyzed Asymmetric Reactions
by Agata J. Pacuła-Miszewska, Anna Laskowska, Anna Kmieciak, Mariola Zielińska-Błajet, Marek P. Krzemiński and Jacek Ścianowski
Symmetry 2021, 13(3), 502; https://doi.org/10.3390/sym13030502 - 19 Mar 2021
Cited by 2 | Viewed by 2656
Abstract
A series of new bidentate N,S-ligands—aziridines containing a para-substituted phenyl sulfide group—was synthesized and evaluated in the Pd-catalyzed Tsuji–Trost reaction and addition of diethylzinc and phenylethynylzinc to benzaldehyde. A high enantiomeric ratio for the addition reactions (up to 94.2:5.8) was obtained using [...] Read more.
A series of new bidentate N,S-ligands—aziridines containing a para-substituted phenyl sulfide group—was synthesized and evaluated in the Pd-catalyzed Tsuji–Trost reaction and addition of diethylzinc and phenylethynylzinc to benzaldehyde. A high enantiomeric ratio for the addition reactions (up to 94.2:5.8) was obtained using the aziridine ligand bearing a p-nitro phenyl sulfide group. Collected results reveal a specific electronic effect that, by the presence of particular electron-donating or electron-withdrawing groups in the PhS- moiety, influences the σ-donor–metal binding and the enantioselectivity of the catalyzed reactions. Full article
(This article belongs to the Special Issue Chemistry for Life)
Show Figures

Figure 1

17 pages, 2912 KiB  
Article
Stereoselective Synthesis of the I–L Fragment of the Pacific Ciguatoxins
by J. Stephen Clark and Michael Popadynec
Toxins 2020, 12(12), 740; https://doi.org/10.3390/toxins12120740 - 24 Nov 2020
Cited by 3 | Viewed by 3293
Abstract
The I–L ring system found in all the Pacific ciguatoxins has been prepared from a tricyclic precursor in a highly stereoselective manner. Subtle differences in the reactivity of the enones present in the seven- and eight-membered rings of the tricyclic ether starting material [...] Read more.
The I–L ring system found in all the Pacific ciguatoxins has been prepared from a tricyclic precursor in a highly stereoselective manner. Subtle differences in the reactivity of the enones present in the seven- and eight-membered rings of the tricyclic ether starting material have been exploited to allow selective protection of the enone in the eight-membered ring. Subsequent distereoselective allylation of the seven-membered ring has been accomplished by a palladium-mediated Tsuji-Trost reaction. The K-ring methyl and hydroxyl groups have been installed in a highly stereoselective manner by sequential conjugate reduction and enolate oxidation reactions. Ring L has been constructed by a use of a novel relay ring-closing metathesis reaction to complete the tetracyclic framework, which possesses the functionality necessary for elaboration of rings I and L and the introduction of ring M. Full article
(This article belongs to the Special Issue Ciguatoxins)
Show Figures

Figure 1

12 pages, 3503 KiB  
Communication
Sugar-Annulated Oxazoline Ligands: A Novel Pd(II) Complex and Its Application in Allylic Substitution
by Jochen Kraft, Katharina Mill and Thomas Ziegler
Molecules 2016, 21(12), 1704; https://doi.org/10.3390/molecules21121704 - 10 Dec 2016
Cited by 17 | Viewed by 7049
Abstract
Two novel carbohydrate-derived pyridyl (PYOX)- and cyclopropyl (CYBOX)-substituted oxazoline ligands were prepared from d-glucosamine hydrochloride and 1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-β-d-glucopyranose hydrochloride in two steps, respectively. The sugar-annulated PYOX ligand formed a stable metal complex with Pd(II), which was fully characterized by [...] Read more.
Two novel carbohydrate-derived pyridyl (PYOX)- and cyclopropyl (CYBOX)-substituted oxazoline ligands were prepared from d-glucosamine hydrochloride and 1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-β-d-glucopyranose hydrochloride in two steps, respectively. The sugar-annulated PYOX ligand formed a stable metal complex with Pd(II), which was fully characterized by NMR spectroscopy and X-ray crystallography. NMR and X-ray analysis revealed a change of the conformation in the sugar moiety upon complexation with the palladium(II) species. Both glycosylated ligands resulted in high asymmetric induction (up to 98% ee) upon application as chiral ligands in the Pd-catalyzed allylic alkylation of rac-1,3-diphenylallyl acetate with dimethyl malonate (Tsuji-Trost reaction). Both ligands provided mainly the (R)-enantiomer of the alkylation product. Full article
(This article belongs to the Special Issue Asymmetric Synthesis 2017)
Show Figures

Graphical abstract

19 pages, 682 KiB  
Article
Reusable Polymer-Supported Terpyridine Palladium Complex for Suzuki-Miyaura, Mizoroki-Heck, Sonogashira, and Tsuji-Trost Reaction in Water
by Toshimasa Suzuka, Kosuke Kimura and Takuya Nagamine
Polymers 2011, 3(1), 621-639; https://doi.org/10.3390/polym3010621 - 14 Mar 2011
Cited by 37 | Viewed by 11245
Abstract
A novel heterogeneous transition-metal catalyst comprising a polymer-supported terpyridine palladium(II) complex was prepared and found to promote the Suzuki-Miyaura, Mizoroki-Heck, Sonogashira, and Tsuji-Trost, reactions in water under aerobic conditions with a high to excellent yield. The catalyst was recovered by simple filtration and [...] Read more.
A novel heterogeneous transition-metal catalyst comprising a polymer-supported terpyridine palladium(II) complex was prepared and found to promote the Suzuki-Miyaura, Mizoroki-Heck, Sonogashira, and Tsuji-Trost, reactions in water under aerobic conditions with a high to excellent yield. The catalyst was recovered by simple filtration and directly reused several times without loss of catalytic activity. Full article
(This article belongs to the Special Issue New Polymer Synthesis Reactions)
Show Figures

Graphical abstract

19 pages, 622 KiB  
Review
Palladium Catalyzed Allylic C-H Alkylation: A Mechanistic Perspective
by Casper Junker Engelin and Peter Fristrup
Molecules 2011, 16(1), 951-969; https://doi.org/10.3390/molecules16010951 - 21 Jan 2011
Cited by 82 | Viewed by 15591
Abstract
The atom-efficiency of one of the most widely used catalytic reactions for forging C-C bonds, the Tsuji-Trost reaction, is limited by the need of preoxidized reagents. This limitation can be overcome by utilization of the recently discovered palladium-catalyzed C-H activation, the allylic C-H [...] Read more.
The atom-efficiency of one of the most widely used catalytic reactions for forging C-C bonds, the Tsuji-Trost reaction, is limited by the need of preoxidized reagents. This limitation can be overcome by utilization of the recently discovered palladium-catalyzed C-H activation, the allylic C-H alkylation reaction which is the topic of the current review. Particular emphasis is put on current mechanistic proposals for the three reaction types comprising the overall transformation: C-H activation, nucleophillic addition, and re-oxidation of the active catalyst. Recent advances in C-H bond activation are highlighted with emphasis on those leading to C-C bond formation, but where it was deemed necessary for the general understanding of the process closely related C-H oxidations and aminations are also included. It is found that C-H cleavage is most likely achieved by ligand participation which could involve an acetate ion coordinated to Pd. Several of the reported systems rely on benzoquinone for re-oxidation of the active catalyst. The scope for nucleophilic addition in allylic C-H alkylation is currently limited, due to demands on pKa of the nucleophile. This limitation could be due to the pH dependence of the benzoquinone/hydroquinone redox couple. Alternative methods for re-oxidation that does not rely on benzoquinone could be able to alleviate this limitation. Full article
(This article belongs to the Special Issue Homogeneous Catalysis)
Show Figures

Graphical abstract

Back to TopTop