Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Triticum aestivum subsp. spelta

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1586 KiB  
Article
The Effect of Farming Systems and Cultivars on the Qualitative and Quantitative Composition of Bioactive Compounds in Winter Wheat (Triticum aestivum L.)
by Iwona Kowalska, Agata Soluch, Jarosław Mołdoch and Krzysztof Jończyk
Molecules 2025, 30(4), 902; https://doi.org/10.3390/molecules30040902 - 15 Feb 2025
Cited by 2 | Viewed by 643
Abstract
Triticum aestivum L. subsp. spelta (cv. Rokosz) and common winter wheat Triticum aestivum L. subsp. aestivum (cv. Arktis, Belissa, Estivus, Fidelius, Hondia, Jantarka, KWS Ozon, Linus, Markiza, Ostka Strzelecka, Pokusa) grown in an organic farming system were analyzed and compared. Furthermore, the productivity [...] Read more.
Triticum aestivum L. subsp. spelta (cv. Rokosz) and common winter wheat Triticum aestivum L. subsp. aestivum (cv. Arktis, Belissa, Estivus, Fidelius, Hondia, Jantarka, KWS Ozon, Linus, Markiza, Ostka Strzelecka, Pokusa) grown in an organic farming system were analyzed and compared. Furthermore, the productivity of four common wheat cultivars (cv. Fidelius, Hondia, Jantarka, KWS Ozon) grown under four different (organic, conventional integrated, and monoculture) farming systems was compared. Using UPLC-DAD-MS, UPLC-PDA-MS/MS, and TLC-DPPH, nine phenolic acids, nine alkylresorcinols, and their antiradical activity were identified and quantified. In the organic farming system, the highest yield was observed for T. aestivum L. subsp. aestivum cv. Fidelius (4.17 t/ha). Infections of wheat cultivars were low or at a medium level. The highest resistance to Fusarium fungi was shown by cv. Fidelius, which also exhibited the highest alkylresorcinol content and antioxidant capacity. The total phenolic acid content was highest in cv. Rokosz (1302.3 µg/g), followed by common winter wheat cultivars cv. Linus (1135.1 µg/g) and cv. Markiza (1089.6 µg/g). The potential of winter wheat cultivars for human health and their suitability for cultivation in different production systems was determined, showing significant differences in bioactive compounds depending on cultivars, systems, and years. Full article
(This article belongs to the Special Issue Modern Trends and Solutions in Analytical Chemistry in Poland)
Show Figures

Graphical abstract

20 pages, 2195 KiB  
Article
The Effects of a Cultivar and Production System on the Qualitative and Quantitative Composition of Bioactive Compounds in Spring Wheat (Triticum sp.)
by Iwona Kowalska, Sylwia Pawelec, Łukasz Pecio and Beata Feledyn-Szewczyk
Molecules 2024, 29(17), 4106; https://doi.org/10.3390/molecules29174106 - 29 Aug 2024
Cited by 4 | Viewed by 924
Abstract
Spelt Triticum aestivum L. subsp. spelta (cv. Wirtas), einkorn Triticum monococcum L. (cv. Samopsza) and emmer Triticum dicoccum Schrank (Schuebl) (cv. Płaskurka biała and Płaskurka ciemna) spring wheat cultivars were analyzed and compared to common wheat Triticum aestivum L. subsp. aestivum (cv. Harenda, [...] Read more.
Spelt Triticum aestivum L. subsp. spelta (cv. Wirtas), einkorn Triticum monococcum L. (cv. Samopsza) and emmer Triticum dicoccum Schrank (Schuebl) (cv. Płaskurka biała and Płaskurka ciemna) spring wheat cultivars were analyzed and compared to common wheat Triticum aestivum L. subsp. aestivum (cv. Harenda, Kandela, Mandaryna, Serenada, Goplana, Kamelia, Nimfa, Rusałka, Struna, Zadra) cultivated in an organic production system. Moreover, the performance of four common wheat cultivars (cv. Harenda, Kandela, Mandaryna, Serenada) grown in organic, conventional and integrated production systems were compared. The UHPLC-DAD-MS and TLC-DPPH analyses of specific substances (phenolic acids and alkylresorcinols) were evaluated to ascertain the potential of spring wheat cultivars for promoting human health and suitability for cultivation in an organic production system. The highest yield was observed for the T. aestivum L. subsp. aestivum (modern hull-less) cv. Nimfa (4.45 t/ha), which also demonstrated the lowest resistance to Fusarium spp. infection. Among the contemporary hull-less cultivars, cv. Mandaryna and cv. Harenda exhibited the highest resistance to this pathogen (2.4% and 3.7% of grains infected by Fusarium, respectively), while simultaneously displaying the highest organic phenolic acid content (900.92 and 984.55 µg/g of the grain) and the highest antioxidant potential. It is noteworthy that the cereal hulls of T. monococcum L. (old hulled) (cv. Samopsza) exhibited a markedly elevated content of phenolic acids (approximately 4000 µg/g of the grain). This may have contributed to the reduced incidence of Fusarium infection (9.3% of grains infected) observed in the grains of this cultivar. Furthermore, the hulls proved to be a rich source of phenolics with high antioxidant activity, which is beneficial for human and animal health. Full article
(This article belongs to the Special Issue Analytical Chemistry in Agriculture Application: 2nd Edition)
Show Figures

Figure 1

18 pages, 10742 KiB  
Article
Physicochemical Characteristics and Microstructure of Ancient and Common Wheat Grains Cultivated in Romania
by Camelia Maria Golea, Silviu-Gabriel Stroe, Anca-Mihaela Gâtlan and Georgiana Gabriela Codină
Plants 2023, 12(11), 2138; https://doi.org/10.3390/plants12112138 - 29 May 2023
Cited by 8 | Viewed by 2842
Abstract
Different wheat species, common wheat (Triticum aestivum subsp. aestivum), spelt (Triticum aestivum subsp. spelta) and einkorn (Triticum monococcum subsp. monococcum), were analyzed for physicochemical (moisture, ash, protein, wet gluten, lipid, starch, carbohydrates, test weight and thousand-kernel mass) and [...] Read more.
Different wheat species, common wheat (Triticum aestivum subsp. aestivum), spelt (Triticum aestivum subsp. spelta) and einkorn (Triticum monococcum subsp. monococcum), were analyzed for physicochemical (moisture, ash, protein, wet gluten, lipid, starch, carbohydrates, test weight and thousand-kernel mass) and mineral elements (Ca, Mg, K, Na, Zn, Fe, Mn and Cu) concentrations in grains. Additionally, wheat grain microstructure was determined using a scanning electron microscope. SEM micrographs of wheat grains show that einkorn has smaller type A starch granule diameters and more compact protein bonds compared to common wheat and spelt grains, making it easier to digest. The ancient wheat grains presented higher values for ash, protein, wet gluten and lipid content compared to the common wheat grains, whereas the carbohydrates and starch content were significantly (p < 0.05) lower. The mean values showed that spelt (Triticum aestivum subsp. spelta) grains presented the highest values for Ca, Mg and K, while einkorn (Triticum monococcum subsp. monococcum) grains had the highest values for the microelements Zn, Mn and Cu. The highest values of Fe were recorded for common wheat varieties whereas no significant differences among the species were obtained for Na content. The principal component analysis (p > 0.05) between wheat flours characteristics showed a close association between wheat grain species and between the chemical characteristics of gluten and protein content (r = 0.994), lipid and ash content (r = 0.952) and starch and carbohydrate content (r = 0.927), for which high positive significant correlations (p < 0.05) were obtained. Taking into account that Romania is the fourth largest wheat producer at the European level, this study is of great global importance. According to the results obtained, the ancient species have higher nutritional value from the point of view of chemical compounds and macro elements of minerals. This may be of great importance for consumers who demand bakery products with high nutritional quality. Full article
Show Figures

Figure 1

19 pages, 2517 KiB  
Article
Elucidating the Genetic Relationships on the Original Old Sicilian Triticum Spp. Collection by SNP Genotyping
by Maria Carola Fiore, Sebastiano Blangiforti, Giovanni Preiti, Alfio Spina, Sara Bosi, Ilaria Marotti, Antonio Mauceri, Guglielmo Puccio, Francesco Sunseri and Francesco Mercati
Int. J. Mol. Sci. 2022, 23(21), 13378; https://doi.org/10.3390/ijms232113378 - 2 Nov 2022
Cited by 9 | Viewed by 2631
Abstract
Several Triticum species spread in cultivation in Sicily and neighboring regions over the centuries, which led to the establishment of a large genetic diversity. Many ancient varieties were widely cultivated until the beginning of the last century before being replaced by modern varieties. [...] Read more.
Several Triticum species spread in cultivation in Sicily and neighboring regions over the centuries, which led to the establishment of a large genetic diversity. Many ancient varieties were widely cultivated until the beginning of the last century before being replaced by modern varieties. Recently, they have been reintroduced in cultivation in Sicily. Here, the genetic diversity of 115 and 11 accessions from Sicily and Calabria, respectively, belonging to Triticum species was evaluated using a high-density SNP array. Einkorn, emmer, and spelta wheat genotypes were used as outgroups for species and subspecies; five modern varieties of durum and bread wheat were used as references. A principal coordinates analysis (PCoA) and an unweighted pair group method with arithmetic mean (UPGMA) showed four distinct groups among Triticum species and T. turgidum subspecies. The population structure analysis distinguished five gene pools, among which three appeared private to the T. aestivum, T. turgidum subsp. Turgidum, and ‘Timilia’ group. The principal component analysis (PCA) displayed a bio-morphological trait relationship of a subset (110) of ancient wheat varieties and their wide variability within the T. turgidum subsp. durum subgroups. A discriminant analysis of principal components (DAPC) and phylogenetic analyses applied to the four durum wheat subgroups revealed that the improved varieties harbored a different gene pool compared to the most ancient varieties. The ‘Russello’ and ‘Russello Ibleo’ groups were distinguished; both displayed higher genetic variability compared to the ‘Timilia’ group accessions. This research represents a comprehensive approach to fingerprinting the old wheat Sicilian germplasm, which is useful in avoiding commercial fraud and sustaining the cultivation of landraces and ancient varieties. Full article
(This article belongs to the Special Issue Genetics and Breeding of Wheat 2.0)
Show Figures

Figure 1

14 pages, 2612 KiB  
Article
Characterization of the Protein and Carbohydrate Related Quality Traits of a Large Set of Spelt Wheat Genotypes
by Viola Tóth, László Láng, Gyula Vida, Péter Mikó and Marianna Rakszegi
Foods 2022, 11(14), 2061; https://doi.org/10.3390/foods11142061 - 12 Jul 2022
Cited by 13 | Viewed by 3208
Abstract
Spelt wheat (Triticum aestivum subsp. spelta L.) is an underexploited hexaploid wheat species that has become an increasingly fashionable raw material of bakery products in the last decades, partly because of its ability to grow under organic agricultural conditions and partly because [...] Read more.
Spelt wheat (Triticum aestivum subsp. spelta L.) is an underexploited hexaploid wheat species that has become an increasingly fashionable raw material of bakery products in the last decades, partly because of its ability to grow under organic agricultural conditions and partly because of the growing number of people following the trend of having a healthy diet. However, due to its difficult threshing, most research on spelt seed is based on a very limited number of genotypes. Therefore, we determined the physical, compositional, and breadmaking quality traits of 90 spelt genotypes in order to highlight the variation of these properties and to identify possible genetic resources for spelt improvement. The thousand kernel weight of the spelt genotypes ranged between 23.2 and 49.7 g, the protein content between 12.1% and 22.2%, the gluten index between 0.7 and 98.8, the dough stability between 0.0 and 19.6 min, and the starch damage between 6.3 and 19.4 UCD value. The average values showed that spelt has higher protein and gluten contents but weaker dough strength and stability than common bread wheat. The starch pasting temperature was also higher in spelt, but the starch damage was lower, resulting in lower water absorption. Some genebank accessions (MVGB142, 145, 353, and 525) and internationally available cultivars (Bohemia, Bodensonne, Black-Bearded, and White-Beardless) were identified as good genetic resources for improving the breadmaking-quality traits of spelt. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods, Volume II)
Show Figures

Figure 1

16 pages, 594 KiB  
Article
Genetic Analysis of Hexaploid Wheat (Triticum aestivum L.) Using the Complete Sequencing of Chloroplast DNA and Haplotype Analysis of the Wknox1 Gene
by Mari Gogniashvili, Yoshihiro Matsuoka and Tengiz Beridze
Int. J. Mol. Sci. 2021, 22(23), 12723; https://doi.org/10.3390/ijms222312723 - 24 Nov 2021
Cited by 1 | Viewed by 2783
Abstract
The aim of the presented study is a genetic characterization of the hexaploid wheat Triticum aestivum L. Two approaches were used for the genealogical study of hexaploid wheats—the complete sequencing of chloroplast DNA and PCR-based haplotype analysis of the fourth intron of Wknox1d [...] Read more.
The aim of the presented study is a genetic characterization of the hexaploid wheat Triticum aestivum L. Two approaches were used for the genealogical study of hexaploid wheats—the complete sequencing of chloroplast DNA and PCR-based haplotype analysis of the fourth intron of Wknox1d and of the fifth-to-sixth-exon region of Wknox1b. The complete chloroplast DNA sequences of 13 hexaploid wheat samples were determined: Free-threshing—T. aestivum subsp. aestivum, one sample; T. aestivum subsp. compactum, two samples; T. aestivum subsp. sphaerococcum, one sample; T. aestivum subsp. carthlicoides, four samples. Hulled—T. aestivum subsp. spelta, three samples; T. aestivum subsp. vavilovii jakubz., two samples. The comparative analysis of complete cpDNA sequences of 20 hexaploid wheat samples (13 samples in this article plus 7 samples sequenced in this laboratory in 2018) was carried out. PCR-based haplotype analysis of the fourth intron of Wknox1d and of the fifth-to-sixth exon region of Wknox1b of all 20 hexaploid wheat samples was carried out. The 20 hexaploid wheat samples (13 samples in this article plus 7 samples in 2018) can be divided into two groups—T. aestivum subsp. spelta, three samples and T. aestivum subsp. vavilovii collected in Armenia, and the remaining 16 samples, including T. aestivum subsp. vavilovii collected in Europe (Sweden). If we take the cpDNA of Chinese Spring as a reference, 25 SNPs can be identified. Furthermore, 13–14 SNPs can be identified in T. aestivum subsp. spelta and subsp. vavilovii (Vav1). In the other samples up to 11 SNPs were detected. 22 SNPs are found in the intergenic regions, 2 found in introns, and 10 SNPs were found in the genes, of which seven are synonymous. PCR-based haplotype analysis of the fourth intron of Wknox1d and the fifth-to-sixth-exon region of Wknox1b provides an opportunity to make an assumption that hexaploid wheats T. aestivum subsp. macha var. palaeocolchicum and var. letshckumicum differ from other macha samples by the absence of a 42 bp insertion in the fourth intron of Wknox1d. One possible explanation for this observation would be that two Aegilops tauschii Coss. (A) and (B) participated in the formation of hexaploids through the D genome: Ae. tauschii (A)—macha (1–5, 7, 8, 10–12), and Ae. tauschii (B)—macha M6, M9, T. aestivum subsp. aestivum cv. ‘Chinese Spring’ and cv. ‘Red Doly’. Full article
(This article belongs to the Special Issue Genetics and Breeding of Wheat)
Show Figures

Figure 1

13 pages, 1483 KiB  
Article
Usefulness of Hulled Wheats Grown in Polish Environment for Wholegrain Pasta-Making
by Aneta Bobryk-Mamczarz, Anna Kiełtyka-Dadasiewicz and Leszek Rachoń
Foods 2021, 10(2), 458; https://doi.org/10.3390/foods10020458 - 19 Feb 2021
Cited by 10 | Viewed by 4621
Abstract
The best pasta raw material is durum wheat (Triticum turgidum subsp. durum (Desf.) Husn.). Recently, old wheat species have also attracted interest. The aim of the study was to evaluate their usefulness for industrial pasta production. The technological characteristics of grains and [...] Read more.
The best pasta raw material is durum wheat (Triticum turgidum subsp. durum (Desf.) Husn.). Recently, old wheat species have also attracted interest. The aim of the study was to evaluate their usefulness for industrial pasta production. The technological characteristics of grains and the organoleptic characteristics of pasta obtained from hulled emmer (T. turgidum subsp. dicoccum) and spelt (T. aestivum ssp. spelta) were determined and compared to durum wheat, as a standard pasta raw material, and common wheat (T. aestivum). All wheats were grown under identical conditions. The hardness of kernels was assessed using the practical size index, wheat hardness index, torque moment, milling work of 50 g of flour, semolina yield, and starch damage. The technological and nutritional values of semolina, i.e., protein and ash content, wet gluten yield and quality, and falling number, were determined. Moreover, the organoleptic characteristics of cooked pasta were analysed in terms of appearance, colour, taste, smell, and consistency. The milling parameters of emmer were comparable to those of durum wheat; moreover, the content of protein, gluten, and ash was higher in emmer. Spelt was found to be similar to common wheat. Hulled wheats, especially emmer, show good quality parameters and can be an alternative raw material for industrial pasta production. Full article
(This article belongs to the Special Issue Innovative Pasta with High Nutritional and Health Potential)
Show Figures

Figure 1

Back to TopTop