Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Thymus quinquecostatus Celak

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4016 KiB  
Article
Thyme (Thymus quinquecostatus Celak) Polyphenol-Rich Extract (TPE) Alleviates HFD-Induced Liver Injury in Mice by Inactivating the TLR4/NF-κB Signaling Pathway through the GutLiver Axis
by Xialu Sheng, Lixia Wang, Ping Zhan, Wanying He, Honglei Tian and Jianshu Liu
Foods 2023, 12(16), 3074; https://doi.org/10.3390/foods12163074 - 16 Aug 2023
Cited by 6 | Viewed by 3799
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a significant and urgent global health concern. Thyme (Thymus quinquecostatus Celak) is a plant commonly used in cuisine and traditional medicine in Asian countries and possesses potential liver-protective properties. This study aimed to assess the hepatoprotective [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) represents a significant and urgent global health concern. Thyme (Thymus quinquecostatus Celak) is a plant commonly used in cuisine and traditional medicine in Asian countries and possesses potential liver-protective properties. This study aimed to assess the hepatoprotective effects of thyme polyphenol-rich extract (TPE) on high-fat diet (HFD)-induced NAFLD and further explore possible mechanisms based on the gut–liver axis. HFD-induced liver injury in C57 mice is markedly ameliorated by TPE supplementation in a dose-dependent manner. TPE also regulates the expression of liver lipid metabolic genes (i.e., Hmgcr, Srebp-1, Fasn, and Cyp7a1), enhancing the production of SCFAs and regulating serum metabolites by modulating gut microbial dysbiosis. Furthermore, TPE enhances the intestinal barrier function and alleviates intestinal inflammation by upregulating tight junction protein expression (i.e., ZO-1 and occluding) and inactivating the intestinal TLR4/NF-κB pathway in HFD-fed mice. Consequently, gut-derived LPS translocation to the circulation was blocked, the liver TLR4/NF-κB signaling pathway was repressed, and subsequent pro-inflammatory cytokine production was restrained. Conclusively, TPE might exert anti-NAFLD effects through the gut–liver axis and has the potential to be used as a dietary supplement for the management of NAFLD. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

14 pages, 1197 KiB  
Article
Variations in the Chemical Composition of Essential Oils in Native Populations of Korean Thyme, Thymus quinquecostatus Celak.
by Minju Kim, Kandhasamy Sowndhararajan, Ponnuvel Deepa and Songmun Kim
Molecules 2022, 27(21), 7203; https://doi.org/10.3390/molecules27217203 - 24 Oct 2022
Cited by 5 | Viewed by 2211
Abstract
The genus Thymus (Lamiaceae) contains numerous medicinally important species. Among them, Thymus quinquecostatus Celak. has been extensively utilized as a traditional medicine and a food flavoring agent in the Korean peninsula, owing to its unique aroma. In particular, T. quinquecostatus has been used [...] Read more.
The genus Thymus (Lamiaceae) contains numerous medicinally important species. Among them, Thymus quinquecostatus Celak. has been extensively utilized as a traditional medicine and a food flavoring agent in the Korean peninsula, owing to its unique aroma. In particular, T. quinquecostatus has been used for the treatment of gastroenteritis, inflammation, stomach problems, liver disease, arthritis, arteriosclerosis, and menstrual problems. This study aimed to investigate the chemical diversity of essential oils among 103 Korean native populations of T. quinquecostatus. For this purpose, seedlings of T. quinquecostatus populations were purchased from different regions in the Korean Peninsula, and seedlings were grown in the experimental field under the same environmental conditions. The chemical compositions of steam-distilled essential oils were determined using GC-MS. In total, 212 components were identified from 103 populations of T. quinquecostatus. Furthermore, principal component analysis (PCA) was performed in order to understand variations in the essential oil compositions among 103 Korean native populations of T. quinquecostatus. According to the essential oil compositions, 30 components were selected for PCA. Based on the most abundant essential oil components, four chemotypes were identified in T. quinquecostatus populations. PCA and cluster analyses revealed that 103 individuals of T. quinquecostatus could be classified into four clusters, such as thymol, geraniol, geranyl acetate, and linalool. Furthermore, dendrogram construction demonstrated that geraniol and geranyl acetate, as well as linalool and thymol groups, were closely related. This study suggested the significant chemical polymorphism of essential oils in local populations of T. quinquecostatus in Korea. It could be concluded that the intraspecific variations in the essential oil compositions may be associated with genetic diversity among the individuals. Full article
(This article belongs to the Special Issue Chemical Composition and Bioactivities of Essential Oils)
Show Figures

Figure 1

20 pages, 4141 KiB  
Review
The Chemical Composition and Biological Activities of Essential Oil from Korean Native Thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.)
by Minju Kim, Kandhasamy Sowndhararajan and Songmun Kim
Molecules 2022, 27(13), 4251; https://doi.org/10.3390/molecules27134251 - 1 Jul 2022
Cited by 26 | Viewed by 7677
Abstract
Thymus quinquecostatus Celak. (Korean name: bak-ri-hyang) is an important medicinal and aromatic herb in Korea, which is named for the spread of its fragrance over a distance of approximately 40 km. In traditional Korean systems of medicine, T. quinquecostatus has been used to [...] Read more.
Thymus quinquecostatus Celak. (Korean name: bak-ri-hyang) is an important medicinal and aromatic herb in Korea, which is named for the spread of its fragrance over a distance of approximately 40 km. In traditional Korean systems of medicine, T. quinquecostatus has been used to treat cancer, constipation, hepatic disease, arteriosclerosis, poor circulation in women, constipation, and menstrual irregularities. At present, T. quinquecostatus is used only for ornamental and ground cover purposes. A literature search was conducted to retrieve information regarding the essential oil composition and biological properties of T. quinquecostatus from PubMed, Science Direct, Wiley, Springer, Taylor and Francis, Wiley, and other literature databases. T. quinquecostatus can be divided into different chemotypes, such as γ-terpinene, thymol, phenol, carvacrol, and geraniol, according to the presence of major components in its essential oil. Further, the essential oil from T. quinquecostatus has been reported to possess various therapeutic properties such as antioxidant, antimicrobial, anticancer, anti-inflammatory, analgesic, sleep prolonging, soothing, skin protection and whitening, anti-aging, anti-obesity, and anti-acne properties. In conclusion, this review will be helpful for utilizing the T. quinquecostatus plant in different industries including food, pharmaceuticals, pesticides, perfumery, and cosmetics. Full article
(This article belongs to the Special Issue Essential Oil Research and Product Development)
Show Figures

Figure 1

18 pages, 3184 KiB  
Article
Antioxidative Effects of Thymus quinquecostatus CELAK through Mitochondrial Biogenesis Improvement in RAW 264.7 Macrophages
by Jin Young Hong, Hyunseong Kim, Wan-Jin Jeon, Seungho Baek and In-Hyuk Ha
Antioxidants 2020, 9(6), 548; https://doi.org/10.3390/antiox9060548 - 23 Jun 2020
Cited by 10 | Viewed by 5293
Abstract
Oxidative stress plays a key role in the pathogenesis of several diseases, including neurodegenerative diseases. Recent studies have reported that mitochondrial dysfunction is a leading cause of the overproduction of reactive oxygen species and oxidative stress. Mitochondrial changes play an important role in [...] Read more.
Oxidative stress plays a key role in the pathogenesis of several diseases, including neurodegenerative diseases. Recent studies have reported that mitochondrial dysfunction is a leading cause of the overproduction of reactive oxygen species and oxidative stress. Mitochondrial changes play an important role in preventing oxidative stress. However, there is a lack of experimental evidence supporting this hypothesis. Thymus quinquecostatus CELAK (TQC) extract is a plant from China belonging to the thymus species, which can mediate the inflammatory response and prevent cell damage through its antioxidant activities. This study examines whether TQC can scavenge excess ROS originating from the mitochondria in RAW 264.7 macrophages. We used lipopolysaccharide (LPS) to induce inflammation and oxidative stress in RAW 264.7 macrophages and performed an immunocytochemistry dot blot of 8-hydroxy-2′-deoxyguanosine (8-OHdG) and real-time PCR to analyze the expression levels of genes involved in mitochondrial biogenesis and oxidative metabolism. TQC was found to significantly reduce the intensity of immunostained MitoSOX and 8-OHdG levels in the total genomic DNA within the mitochondria in RAW 264.7 macrophages. The HO-1 and Nrf2 mRNA levels were also significantly increased in the TQC groups. Therefore, we verified that TQC improves mitochondrial function and attenuates oxidative stress induced by LPS. Our results can provide reference for the effect of TQC to develop new therapeutic strategies for various diseases. Full article
(This article belongs to the Special Issue Antioxidant and Biological Properties of Plant Extracts)
Show Figures

Figure 1

16 pages, 4646 KiB  
Article
Morphological, Chemical, and Genetic Characteristics of Korean Native Thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.)
by Minju Kim, Jun-Cheol Moon, Songmun Kim and Kandhasamy Sowndhararajan
Antibiotics 2020, 9(6), 289; https://doi.org/10.3390/antibiotics9060289 - 28 May 2020
Cited by 15 | Viewed by 3068
Abstract
Bak-ri-hyang (Thymus quinquecostatus Celak.) is an important medicinal and aromatic plant in Korea. T. quinquecostatus population and is always mixed with other thyme cultivars during cultivation and marketing. Hence, this study aimed to determine the genetic variability and the essential oil composition [...] Read more.
Bak-ri-hyang (Thymus quinquecostatus Celak.) is an important medicinal and aromatic plant in Korea. T. quinquecostatus population and is always mixed with other thyme cultivars during cultivation and marketing. Hence, this study aimed to determine the genetic variability and the essential oil composition of three Korean native thyme, T. quinquecostatus cultivars collected from the Wolchul, Jiri, and Odae mountains, in comparison with six commercial thyme cultivars (T. vulgaris), to distinguish Bak-ri-hyang from other thyme cultivars. The composition of essential oils obtained from nine individuals was analyzed by gas chromatography–mass spectrometry (GC–MS). The random amplified polymorphic DNA (RAPD) analysis was accomplished using 16 different primers. The GC–MS analysis revealed that Wolchul, creeping, golden, and orange cultivars belong to the geraniol chemotype. Whereas the Odae, lemon, and silver cultivars belong to the thymol chemotype. Further, linalool was the most abundant component in carpet and Jiri cultivars. The RAPD analysis demonstrated that all thyme cultivars showed characteristic RAPD patterns that allowed their identification. In total, 133 bands were obtained using 16 primers, and 124 bands were polymorphic, corresponding to 93.2% polymorphism. Cluster analysis of RAPD markers established the presence of clear separation from nine thyme cultivars. The highest dissimilarity and similarity coefficient of the RAPD markers were 0.58 and 0.98, respectively. According to the RAPD patterns, the nine thyme cultivars could be divided into two major clusters. Among three Korean cultivars, the Wolchul and Odae cultivars were placed into the same cluster, but they did not show identical clustering with their essential oil compositions. The findings of the present study suggest that RAPD analysis can be a useful tool for marker-assisted identification of T. quinquecostatus from other Thymus species. Full article
(This article belongs to the Special Issue Chemical Composition and Biological Activities of Essential Oils)
Show Figures

Figure 1

11 pages, 1691 KiB  
Article
Changes of Soil Microbiological Properties during Grass Litter Decomposition in Loess Hilly Region, China
by Yun Xiang, Shaoshan An, Man Cheng, Lijun Liu and Ying Xie
Int. J. Environ. Res. Public Health 2018, 15(9), 1797; https://doi.org/10.3390/ijerph15091797 - 21 Aug 2018
Cited by 11 | Viewed by 3356
Abstract
Litter, the link between soil and plant, is an important part of nutrient return to soil. Deeply understanding the effect of litter decomposition on soil microbiological properties is important for the sustainable development of grasslands. Three plants (Thymus quinquecostatus Celak., Stipa bungeana [...] Read more.
Litter, the link between soil and plant, is an important part of nutrient return to soil. Deeply understanding the effect of litter decomposition on soil microbiological properties is important for the sustainable development of grasslands. Three plants (Thymus quinquecostatus Celak., Stipa bungeana Trin. and Artemisia sacrorum ledeb.) leaf litter were selected. A simulation experiment using the nylon bag method was conducted to measure the soil microbial biomass carbon and nitrogen, and soil enzyme activity during litter decomposition. The results showed that the decomposition of three leaf litter enhanced soil microbial carbon and nitrogen. The change rate of soil microbial carbon and nitrogen decreased as Ar.S > St.B > Th.Q. The activities of soil invertase, soil urease, and soil nitrate reductase were significantly improved by the coverage of leaf litter. After 741-day litter decomposition, the change rate of soil invertase was from 16.7% to 33.2%. The change rate of soil urease was highest in the Th.Q treatment; St.B treatment and Ar.S treatment followed, and lowest in the control. The change rates of soil nitrate reductase in the St.B and Ar.S treatment were >1000% higher than those of other treatments. The response of soil enzyme activity to litter decomposition “lagged” behind the change of soil microbial biomass. The significant increase of soil microbial biomass and enzyme activity demonstrated that litter decomposition played an important role in maintaining soil ecological function. Full article
(This article belongs to the Section Environmental Science and Engineering)
Show Figures

Figure 1

18 pages, 2547 KiB  
Article
Multi-Response Extraction Optimization Based on Anti-Oxidative Activity and Quality Evaluation by Main Indicator Ingredients Coupled with Chemometric Analysis on Thymus quinquecostatus Celak
by Yan-Li Chang, Meng Shen, Xue-Yang Ren, Ting He, Le Wang, Shu-Sheng Fan, Xiu-Huan Wang, Xiao Li, Xiao-Ping Wang, Xiao-Yi Chen, Hong Sui and Gai-Mei She
Molecules 2018, 23(4), 957; https://doi.org/10.3390/molecules23040957 - 19 Apr 2018
Cited by 12 | Viewed by 4927
Abstract
Thymus quinquecostatus Celak is a species of thyme in China and it used as condiment and herbal medicine for a long time. To set up the quality evaluation of T. quinquecostatus, the response surface methodology (RSM) based on its 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical [...] Read more.
Thymus quinquecostatus Celak is a species of thyme in China and it used as condiment and herbal medicine for a long time. To set up the quality evaluation of T. quinquecostatus, the response surface methodology (RSM) based on its 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was introduced to optimize the extraction condition, and the main indicator components were found through an UPLC-LTQ-Orbitrap MSn method. The ethanol concentration, solid-liquid ratio, and extraction time on optimum conditions were 42.32%, 1:17.51, and 1.8 h, respectively. 35 components having 12 phenolic acids and 23 flavonoids were unambiguously or tentatively identified both positive and negative modes to employ for the comprehensive analysis in the optimum anti-oxidative part. A simple, reliable, and sensitive HPLC method was performed for the multi-component quantitative analysis of T. quinquecostatus using six characteristic and principal phenolic acids and flavonoids as reference compounds. Furthermore, the chemometrics methods (principal components analysis (PCA) and hierarchical clustering analysis (HCA)) appraised the growing areas and harvest time of this herb closely relative to the quality-controlled. This study provided full-scale qualitative and quantitative information for the quality evaluation of T. quinquecostatus, which would be a valuable reference for further study and development of this herb and related laid the foundation of further study on its pharmacological efficacy. Full article
(This article belongs to the Collection Recent Advances in Flavors and Fragrances)
Show Figures

Figure 1

Back to TopTop