Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = TgF344-AD rat model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1469 KB  
Article
Exercise Improves Alzheimer’s Disease Phenotype in the TgF344-AD Rat, a Behavioral Time Course Study of Males and Females
by Stephanie E. Hall, Zachary J. White, Troy T. Rohn, Keshari H. Sudasinghe and Michael E. Young
Brain Sci. 2025, 15(6), 631; https://doi.org/10.3390/brainsci15060631 - 12 Jun 2025
Cited by 1 | Viewed by 1258
Abstract
Alzheimer’s disease (AD) is the third leading cause of death among older adults with nearly 6 million diagnosed annually. In the race for a cure, one thing is certain—exercise can reduce your risk. However, the mechanisms responsible for this reduced risk are unknown. [...] Read more.
Alzheimer’s disease (AD) is the third leading cause of death among older adults with nearly 6 million diagnosed annually. In the race for a cure, one thing is certain—exercise can reduce your risk. However, the mechanisms responsible for this reduced risk are unknown. Several studies have linked exercise to improved memory, reduced amyloid beta plaques, and tau hyperphosphorylation in AD. Background/Objectives: By utilizing a novel rat model of AD, TgF344-AD, we evaluated the time course of behavioral shifts as well as the protective effect of exercise. Methods: TgF344-AD animals (61 total, 31 females and 30 males) were assessed every 3 months from 3 to 12 months of age and then assessments were increased to monthly until they reached 18 months of age. A progressive treadmill protocol was administered at 12 months of age and continued until 18 months. Pre-intervention and post-intervention data were analyzed. Results: Females had greater grip strength relative to body mass compared to males and exercise attenuated the age-related and AD-induced decline. Also, female AD-impaired memory was rescued with exercise, while males had no exercise-induced improvements. Conclusions: There is a sex difference present in the TgF344-AD rat model of Alzheimer’s disease and this should be studied further; in addition, sex differences across all models of AD and the human pathology need to be evaluated. Exercise neuroprotection, while more prominent in females, is an important factor in AD research, and further work to understand the mechanisms of neuroprotection is warranted. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

25 pages, 12527 KB  
Article
A Soluble Epoxide Hydrolase Inhibitor Improves Cerebrovascular Dysfunction, Neuroinflammation, Amyloid Burden, and Cognitive Impairments in the hAPP/PS1 TgF344-AD Rat Model of Alzheimer’s Disease
by Xing Fang, Jane J. Border, Huawei Zhang, Lavanya Challagundla, Jasleen Kaur, Sung Hee Hwang, Bruce D. Hammock, Fan Fan and Richard J. Roman
Int. J. Mol. Sci. 2025, 26(6), 2433; https://doi.org/10.3390/ijms26062433 - 8 Mar 2025
Cited by 3 | Viewed by 2512
Abstract
Alzheimer’s disease (AD) is an increasing global healthcare crisis with few effective treatments. The accumulation of amyloid plaques and hyper-phosphorylated tau are thought to underlie the pathogenesis of AD. However, current studies have recognized a prominent role of cerebrovascular dysfunction in AD. We [...] Read more.
Alzheimer’s disease (AD) is an increasing global healthcare crisis with few effective treatments. The accumulation of amyloid plaques and hyper-phosphorylated tau are thought to underlie the pathogenesis of AD. However, current studies have recognized a prominent role of cerebrovascular dysfunction in AD. We recently reported that SNPs in soluble epoxide hydrolase (sEH) are linked to AD in human genetic studies and that long-term administration of an sEH inhibitor attenuated cerebral vascular and cognitive dysfunction in a rat model of AD. However, the mechanisms linking changes in cerebral vascular function and neuroprotective actions of sEH inhibitors in AD remain to be determined. This study investigated the effects of administration of an sEH inhibitor, 1-(1-Propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU), on neurovascular coupling, blood–brain barrier (BBB) function, neuroinflammation, and cognitive dysfunction in an hAPP/PS1 TgF344-AD rat model of AD. We observed predominant β-amyloid accumulation in the brains of 9–10-month-old AD rats and that TPPU treatment for three months reduced amyloid burden. The functional hyperemic response to whisker stimulation was attenuated in AD rats, and TPPU normalized the response. The sEH inhibitor, TPPU, mitigated capillary rarefaction, BBB leakage, and activation of astrocytes and microglia in AD rats. TPPU increased the expression of pre- and post-synaptic proteins and reduced loss of hippocampal neurons and cognitive impairments in the AD rats, which was confirmed in a transcriptome and GO analysis. These results suggest that sEH inhibitors could be a novel therapeutic strategy for AD. Full article
Show Figures

Figure 1

17 pages, 3033 KB  
Article
Proteoglycans Enhance the Therapeutic Effect of BMSC Transplantation on Osteoarthritis
by Chunxiao Ran, Tianhao Liu, Yongming Bao, Weidan Wang, Dongling Xue, Guangxiao Yin, Xiuzhi Zhang and Dewei Zhao
Bioengineering 2024, 11(11), 1167; https://doi.org/10.3390/bioengineering11111167 - 20 Nov 2024
Viewed by 1684
Abstract
Background: The injection of bone mesenchymal stem cells (BMSCs) for osteoarthritis (OA) treatment fails to address the disrupted extracellular microenvironment, limiting the differentiation and paracrine functions of BMSCs and resulting in suboptimal therapeutic outcomes. Proteoglycans (PGs) promote cell differentiation, tissue repair, and microenvironment [...] Read more.
Background: The injection of bone mesenchymal stem cells (BMSCs) for osteoarthritis (OA) treatment fails to address the disrupted extracellular microenvironment, limiting the differentiation and paracrine functions of BMSCs and resulting in suboptimal therapeutic outcomes. Proteoglycans (PGs) promote cell differentiation, tissue repair, and microenvironment remodeling. This study investigated the potential of combining PGs with BMSCs to increase the efficacy of OA treatment. Methods: We evaluated the effects of PG on BMSC and chondrocyte functions by adding various PG concentrations to the culture media. Additionally, a Transwell system was used to assess the impact of PG on the communication between BMSCs and chondrocytes. The results of the in vitro experiment were verified by tissue staining and immunohistochemistry following the treatment of OA model rats. Results: Our findings indicate that PG effectively induces Col II expression in BMSCs and enhances the paracrine secretion of TGF-β1, thereby activating the TGF-β signaling pathway in chondrocytes and increasing PRG4 gene expression. Compared with the other groups, the BMSC/PG treatment group presented a smoother articular surface and more robust extracellular matrix than the other groups in vivo, with significantly increased expression and distribution of Smad2/3 and PRG4. Conclusions: PG enhances BMSC differentiation into chondrocytes and stimulates paracrine TGF-β1 secretion. Proteoglycans not only promote chondrocyte differentiation and paracrine TGF-β1 signaling in BMSCs but also increase the sensitivity of chondrocytes to TGF-β1 secreted from BMSCs, leading to PRG4 expression through the TGFR/Smad2/3 pathway. Proteoglycans can enhance the therapeutic effect of BMSC treatment on OA and have the potential to delay the degeneration of OA cartilage. Full article
Show Figures

Figure 1

22 pages, 6030 KB  
Article
Selective In Vitro and Ex Vivo Staining of Brain Neurofibrillary Tangles and Amyloid Plaques by Novel Ethylene Ethynylene-Based Optical Sensors
by Florencia A. Monge, Adeline M. Fanni, Patrick L. Donabedian, Jonathan Hulse, Nicole M. Maphis, Shanya Jiang, Tia N. Donaldson, Benjamin J. Clark, David G. Whitten, Kiran Bhaskar and Eva Y. Chi
Biosensors 2023, 13(2), 151; https://doi.org/10.3390/bios13020151 - 18 Jan 2023
Cited by 3 | Viewed by 4071
Abstract
The identification of protein aggregates as biomarkers for neurodegeneration is an area of interest for disease diagnosis and treatment development. In this work, we present novel super luminescent conjugated polyelectrolyte molecules as ex vivo sensors for tau-paired helical filaments (PHFs) and amyloid-β (Aβ) [...] Read more.
The identification of protein aggregates as biomarkers for neurodegeneration is an area of interest for disease diagnosis and treatment development. In this work, we present novel super luminescent conjugated polyelectrolyte molecules as ex vivo sensors for tau-paired helical filaments (PHFs) and amyloid-β (Aβ) plaques. We evaluated the use of two oligo-p-phenylene ethynylenes (OPEs), anionic OPE12− and cationic OPE24+, as stains for fibrillar protein pathology in brain sections of transgenic mouse (rTg4510) and rat (TgF344-AD) models of Alzheimer’s disease (AD) tauopathy, and post-mortem brain sections from human frontotemporal dementia (FTD). OPE12− displayed selectivity for PHFs in fluorimetry assays and strong staining of neurofibrillary tangles (NFTs) in mouse and human brain tissue sections, while OPE24+ stained both NFTs and Aβ plaques. Both OPEs stained the brain sections with limited background or non-specific staining. This novel family of sensors outperformed the gold-standard dye Thioflavin T in sensing capacities and co-stained with conventional phosphorylated tau (AT180) and Aβ (4G8) antibodies. As the OPEs readily bind protein amyloids in vitro and ex vivo, they are selective and rapid tools for identifying proteopathic inclusions relevant to AD. Such OPEs can be useful in understanding pathogenesis and in creating in vivo diagnostically relevant detection tools for neurodegenerative diseases. Full article
(This article belongs to the Special Issue Biosensors and Neuroscience)
Show Figures

Figure 1

17 pages, 1292 KB  
Review
Repurposing SGLT2 Inhibitors for Neurological Disorders: A Focus on the Autism Spectrum Disorder
by Mohammed Moutaz Nakhal, Salahdein Aburuz, Bassem Sadek and Amal Akour
Molecules 2022, 27(21), 7174; https://doi.org/10.3390/molecules27217174 - 23 Oct 2022
Cited by 16 | Viewed by 5801
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a substantially increasing incidence rate. It is characterized by repetitive behavior, learning difficulties, deficits in social communication, and interactions. Numerous medications, dietary supplements, and behavioral treatments have been recommended for the management of this [...] Read more.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a substantially increasing incidence rate. It is characterized by repetitive behavior, learning difficulties, deficits in social communication, and interactions. Numerous medications, dietary supplements, and behavioral treatments have been recommended for the management of this condition, however, there is no cure yet. Recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2 (SGLT2) inhibitors in neurodevelopmental diseases, based on their proved anti-inflammatory effects, such as downregulating the expression of several proteins, including the transforming growth factor beta (TGF-β), interleukin-6 (IL-6), C-reactive protein (CRP), nuclear factor κB (NF-κB), tumor necrosis factor alpha (TNF-α), and the monocyte chemoattractant protein (MCP-1). Furthermore, numerous previous studies revealed the potential of the SGLT2 inhibitors to provide antioxidant effects, due to their ability to reduce the generation of free radicals and upregulating the antioxidant systems, such as glutathione (GSH) and superoxide dismutase (SOD), while crossing the blood brain barrier (BBB). These properties have led to significant improvements in the neurologic outcomes of multiple experimental disease models, including cerebral oxidative stress in diabetes mellitus and ischemic stroke, Alzheimer’s disease (AD), Parkinson’s disease (PD), and epilepsy. Such diseases have mutual biomarkers with ASD, which potentially could be a link to fill the gap of the literature studying the potential of repurposing the SGLT2 inhibitors’ use in ameliorating the symptoms of ASD. This review will look at the impact of the SGLT2 inhibitors on neurodevelopmental disorders on the various models, including humans, rats, and mice, with a focus on the SGLT2 inhibitor canagliflozin. Furthermore, this review will discuss how SGLT2 inhibitors regulate the ASD biomarkers, based on the clinical evidence supporting their functions as antioxidant and anti-inflammatory agents capable of crossing the blood-brain barrier (BBB). Full article
Show Figures

Figure 1

22 pages, 11742 KB  
Article
Mesenchymal Stem Cell Use in Acute Tendon Injury: In Vitro Tenogenic Potential vs. In Vivo Dose Response
by Kristin Bowers, Lisa Amelse, Austin Bow, Steven Newby, Amber MacDonald, Xiaocun Sun, David Anderson and Madhu Dhar
Bioengineering 2022, 9(8), 407; https://doi.org/10.3390/bioengineering9080407 - 22 Aug 2022
Cited by 7 | Viewed by 5138
Abstract
Stem cell therapy for the treatment of tendon injury is an emerging clinical practice in the fields of human and veterinary sports medicine; however, the therapeutic benefit of intralesional transplantation of mesenchymal stem cells in tendonitis cases is not well designed. Questions persist [...] Read more.
Stem cell therapy for the treatment of tendon injury is an emerging clinical practice in the fields of human and veterinary sports medicine; however, the therapeutic benefit of intralesional transplantation of mesenchymal stem cells in tendonitis cases is not well designed. Questions persist regarding the overall tenogenic potential and efficacy of this treatment alone. In this study, we aimed to isolate a rat mesenchymal stem cell lineage for in vitro and in vivo use, to assess the effects of growth factor exposure in vitro on cell morphology, behavior, and tendon-associated glycoprotein production, and to assess the therapeutic potential of intralesional stem cells, as a function of dose, in vivo. First, rat adipose-derived (rAdMSC) and bone marrow-derived (rBMSC) stem cell lineages were isolated, characterized with flow cytometric analysis, and compared in terms of proliferation (MTS assay) and cellular viability (calcein AM staining). Rat AdMSCs displayed superior proliferation and more homogenous CD 73, CD 44H, and CD 90 expression as compared to rBMSC. Next, the tenogenic differentiation potential of the rAdMSC lineage was tested in vitro through isolated and combined stimulation with reported tenogenic growth factors, transforming growth factor (TGF)-β3 and connective tissue growth factor (CTGF). We found that the most effective tenogenic factor in terms of cellular morphologic change, cell alignment/orientation, sustained cellular viability, and tendon-associated glycoprotein upregulation was TGFβ3, and we confirmed that rAdMSC could be induced toward a tenogenic lineage in vitro. Finally, the therapeutic potential of rAdMSCs as a function of dose was assessed using a rat acute Achilles tendon injury model. Amounts of 5 × 105 (low dose) and 4 × 106 (high dose) were used. Subjectively, on the gross morphology, the rAdMSC-treated tendons exhibited fewer adhesions and less scar tissue than the control tendons; however, regardless of the rAdMSC dose, no significant differences in histological grade or tissue collagen I deposition were noted between the rAdMSC-treated and control tendons. Collectively, rAdMSCs exhibited appropriate stem cell markers and tenogenic potential in vitro, but the clinical efficacy of intralesional implantation of undifferentiated cells in acute tendonitis cases could not be proven. Further investigation into complementary therapeutics or specialized culture conditions prior to implantation are warranted. Full article
(This article belongs to the Special Issue Mesenchymal Stem Cells in Regenerative Medicine)
Show Figures

Figure 1

17 pages, 4311 KB  
Article
Effect of Mortalin on Scar Formation in Human Dermal Fibroblasts and a Rat Incisional Scar Model
by Bok Ki Jung, Tai Suk Roh, Hyun Roh, Ju Hee Lee, Chae-Ok Yun and Won Jai Lee
Int. J. Mol. Sci. 2022, 23(14), 7918; https://doi.org/10.3390/ijms23147918 - 18 Jul 2022
Cited by 7 | Viewed by 3955
Abstract
Wound healing is a complicated cascading process; disequilibrium among reparative processes leads to the formation of pathologic scars. Herein, we explored the role of mortalin in scar formation and its association with the interleukin-1α receptor using in vitro and in vivo models. To [...] Read more.
Wound healing is a complicated cascading process; disequilibrium among reparative processes leads to the formation of pathologic scars. Herein, we explored the role of mortalin in scar formation and its association with the interleukin-1α receptor using in vitro and in vivo models. To investigate the effects of mortalin, we performed an MTT cell viability assay, qRT-PCR, and Western blot analyses, in addition to immunofluorescence and immunoprecipitation studies using cultured fibroblasts. A rat incisional wound model was used to evaluate the effect of a mortalin-specific shRNA (dE1-RGD/GFP/shMot) Ad vector in scar tissue. In vitro, the mortalin-treated human dermal fibroblast displayed a significant increase in proliferation of type I collagen, α-smooth muscle actin, transforming growth factor-β, phospho-Smad2/3-complex, and NF-κB levels. Immunofluorescence staining revealed markedly increased mortalin and interleukin-1α receptor protein in keloid tissue compared to those in normal tissue, suggesting that the association between mortalin and IL-1α receptor was responsible for the fibrogenic effect. In vivo, mortalin-specific shRNA-expressing Ad vectors significantly decreased the scar size and type-I-collagen, α-SMA, and phospho-Smad2/3-complex expression in rat incisional scar tissue. Thus, dE1-RGD/GEP/shMot can inhibit the TGF-β/α-SMA axis and NF-κB signal pathways in scar formation, and blocking endogenous mortalin could be a potential therapeutic target for keloids. Full article
(This article belongs to the Special Issue Molecular Mechanisms in Vasculitis)
Show Figures

Figure 1

20 pages, 5675 KB  
Article
Effects of Magnesium Orotate, Benfotiamine and a Combination of Vitamins on Mitochondrial and Cholinergic Function in the TgF344-AD Rat Model of Alzheimer’s Disease
by Christian Viel, Adrian T. Brandtner, Alexander Weißhaar, Alina Lehto, Marius Fuchs and Jochen Klein
Pharmaceuticals 2021, 14(12), 1218; https://doi.org/10.3390/ph14121218 - 24 Nov 2021
Cited by 8 | Viewed by 5023
Abstract
Glucose hypometabolism, mitochondrial dysfunction, and cholinergic deficits have been reported in early stages of Alzheimer’s disease (AD). Here, we examine these parameters in TgF344-AD rats, an Alzheimer model that carries amyloid precursor protein and presenilin-1 mutations, and of wild type F344 rats. In [...] Read more.
Glucose hypometabolism, mitochondrial dysfunction, and cholinergic deficits have been reported in early stages of Alzheimer’s disease (AD). Here, we examine these parameters in TgF344-AD rats, an Alzheimer model that carries amyloid precursor protein and presenilin-1 mutations, and of wild type F344 rats. In mitochondria isolated from rat hippocampi, we found reductions of complex I and oxidative phosphorylation in transgenic rats. Further impairments, also of complex II, were observed in aged (wild-type and transgenic) rats. Treatment with a “cocktail” containing magnesium orotate, benfotiamine, folic acid, cyanocobalamin, and cholecalciferol did not affect mitochondrial activities in wild-type rats but restored diminished activities in transgenic rats to wild-type levels. Glucose, lactate, and pyruvate levels were unchanged by age, genetic background, or treatment. Using microdialysis, we also investigated extracellular concentrations of acetylcholine that were strongly reduced in transgenic animals. Again, ACh levels in wild-type rats did not change upon treatment with nutrients, whereas the cocktail increased hippocampal acetylcholine levels under physiological stimulation. We conclude that TgF344-AD rats display a distinct mitochondrial and cholinergic dysfunction not unlike the findings in patients suffering from AD. This dysfunction can be partially corrected by the application of the “cocktail” which is particularly active in aged rats. We suggest that the TgF344-AD rat is a promising model to further investigate mitochondrial and cholinergic dysfunction and potential treatment approaches for AD. Full article
(This article belongs to the Special Issue Treatment of Alzheimer Disease)
Show Figures

Figure 1

12 pages, 1499 KB  
Article
Early Spatial Memory Impairment in a Double Transgenic Model of Alzheimer’s Disease TgF-344 AD
by Stephanie L. Proskauer Pena, Konstantinos Mallouppas, Andre M. G. Oliveira, Frantisek Zitricky, Athira Nataraj and Karel Jezek
Brain Sci. 2021, 11(10), 1300; https://doi.org/10.3390/brainsci11101300 - 30 Sep 2021
Cited by 13 | Viewed by 4101
Abstract
Before the course of Alzheimer’s disease fully manifests itself and largely impairs a patient’s cognitive abilities, its progression has already lasted for a considerable time without being noticed. In this project, we mapped the development of spatial orientation impairment in an active place [...] Read more.
Before the course of Alzheimer’s disease fully manifests itself and largely impairs a patient’s cognitive abilities, its progression has already lasted for a considerable time without being noticed. In this project, we mapped the development of spatial orientation impairment in an active place avoidance task—a highly sensitive test for mild hippocampal damage. We tested vision, anxiety and spatial orientation performance at four age levels of 4, 6, 9, and 12 months across male and female TgF-344 AD rats carrying human genes for presenilin-1 and amyloid precursor protein. We found a progressive deterioration of spatial navigation in transgenic animals, beginning already at the age of 4 months, that fully developed at 6 months of age across both male and female groups, compared to their age-matched controls. In addition, we described the gradual vision impairment that was accentuated in females at the age of 12 months. These results indicate a rather early onset of cognitive impairment in the TgF-344 AD Alzheimer’s disease model, starting earlier than shown to date, and preceding the reported development of amyloid plaques. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

19 pages, 3253 KB  
Article
Sleep/Wake Behavior and EEG Signatures of the TgF344-AD Rat Model at the Prodromal Stage
by Matthias Kreuzer, Glenda L. Keating, Thomas Fenzl, Lorenz Härtner, Christopher G. Sinon, Ihab Hajjar, Vincent Ciavatta, David B. Rye and Paul S. García
Int. J. Mol. Sci. 2020, 21(23), 9290; https://doi.org/10.3390/ijms21239290 - 5 Dec 2020
Cited by 11 | Viewed by 4017
Abstract
Transgenic modification of the two most common genes (APPsw, PS1ΔE9) related to familial Alzheimer’s disease (AD) in rats has produced a rodent model that develops pathognomonic signs of AD without genetic tau-protein modification. We used 17-month-old AD rats (n = 8) and [...] Read more.
Transgenic modification of the two most common genes (APPsw, PS1ΔE9) related to familial Alzheimer’s disease (AD) in rats has produced a rodent model that develops pathognomonic signs of AD without genetic tau-protein modification. We used 17-month-old AD rats (n = 8) and age-matched controls (AC, n = 7) to evaluate differences in sleep behavior and EEG features during wakefulness (WAKE), non-rapid eye movement sleep (NREM), and rapid eye movement sleep (REM) over 24-h EEG recording (12:12h dark–light cycle). We discovered that AD rats had more sleep–wake transitions and an increased probability of shorter REM and NREM bouts. AD rats also expressed a more uniform distribution of the relative spectral power. Through analysis of information content in the EEG using entropy of difference, AD animals demonstrated less EEG information during WAKE, but more information during NREM. This seems to indicate a limited range of changes in EEG activity that could be caused by an AD-induced change in inhibitory network function as reflected by increased GABAAR-β2 expression but no increase in GAD-67 in AD animals. In conclusion, this transgenic rat model of Alzheimer’s disease demonstrates less obvious EEG features of WAKE during wakefulness and less canonical features of sleep during sleep. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Neural Correlates of General Anesthesia)
Show Figures

Figure 1

18 pages, 1135 KB  
Review
Potential Role of Venular Amyloid in Alzheimer’s Disease Pathogenesis
by Christopher D. Morrone, Jossana Bishay and JoAnne McLaurin
Int. J. Mol. Sci. 2020, 21(6), 1985; https://doi.org/10.3390/ijms21061985 - 14 Mar 2020
Cited by 36 | Viewed by 6429
Abstract
Insurmountable evidence has demonstrated a strong association between Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA), along with various other cerebrovascular diseases. One form of CAA, which is the accumulation of amyloid-beta peptides (Aβ) along cerebral vessel walls, impairs perivascular drainage pathways and [...] Read more.
Insurmountable evidence has demonstrated a strong association between Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA), along with various other cerebrovascular diseases. One form of CAA, which is the accumulation of amyloid-beta peptides (Aβ) along cerebral vessel walls, impairs perivascular drainage pathways and contributes to cerebrovascular dysfunction in AD. To date, CAA research has been primarily focused on arterial Aβ, while the accumulation of Aβ in veins and venules were to a lesser extent. In this review, we describe preclinical models and clinical studies supporting the presence of venular amyloid and potential downstream pathological mechanisms that affect the cerebrovasculature in AD. Venous collagenosis, impaired cerebrovascular pulsatility, and enlarged perivascular spaces are exacerbated by venular amyloid and increase Aβ deposition, potentially through impaired perivascular clearance. Gaining a comprehensive understanding of the mechanisms involved in venular Aβ deposition and associated pathologies will give insight to how CAA contributes to AD and its association with AD-related cerebrovascular disease. Lastly, we suggest that special consideration should be made to develop Aβ-targeted therapeutics that remove vascular amyloid and address cerebrovascular dysfunction in AD. Full article
(This article belongs to the Special Issue Cerebral Amyloid Angiopathy: Causes, Diagnosis and Treatment)
Show Figures

Figure 1

17 pages, 4398 KB  
Article
Effects of Bilayer Nanofibrous Scaffolds Containing Curcumin/Lithospermi Radix Extract on Wound Healing in Streptozotocin-Induced Diabetic Rats
by Bo-Yin Yang, Chung-Hsuan Hu, Wei-Chien Huang, Chien-Yi Ho, Chun-Hsu Yao and Chiung-Hua Huang
Polymers 2019, 11(11), 1745; https://doi.org/10.3390/polym11111745 - 24 Oct 2019
Cited by 54 | Viewed by 4422
Abstract
Impaired growth factor production, angiogenic response, macrophage function, and collagen accumulation have been shown to delay wound healing. Delayed wound healing is a debilitating complication of diabetes that leads to significant morbidity. In this study, curcumin and Lithospermi radix (LR) extract, which are [...] Read more.
Impaired growth factor production, angiogenic response, macrophage function, and collagen accumulation have been shown to delay wound healing. Delayed wound healing is a debilitating complication of diabetes that leads to significant morbidity. In this study, curcumin and Lithospermi radix (LR) extract, which are used in traditional Chinese herbal medicine, were added within nanofibrous membranes to improve wound healing in a streptozotocin (STZ)-induced diabetic rat model. Gelatin-based nanofibers, which were constructed with curcumin and LR extract at a flow rate of 0.1 mL/hour and an applied voltage of 20 kV, were electrospun onto chitosan scaffolds to produce bilayer nanofibrous scaffolds (GC/L/C). The wounds treated with GC/L/C exhibited a higher recovery rate and transforming growth factor-beta (TGF-β) expression in Western blot assays. The decreased levels of pro-inflammatory markers, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), provided evidence for the anti-inflammatory effects of GC/L/C treatment. Chronic wounds treated with GC/L/C achieved better performance with a 58 ± 7% increase in recovery rate on the seventh day. Based on its anti-inflammatory and wound-healing effects, the GC/L/C bilayer nanofibrous scaffolds can be potential materials for chronic wound treatment. Full article
(This article belongs to the Special Issue Polymeric Colloidal Materials for Biomedical Applications)
Show Figures

Graphical abstract

17 pages, 2366 KB  
Article
TGF-β1 Protection against Aβ1–42-Induced Neuroinflammation and Neurodegeneration in Rats
by Wei-Xing Shen, Jia-Hui Chen, Jian-Hua Lu, Yu-Ping Peng and Yi-Hua Qiu
Int. J. Mol. Sci. 2014, 15(12), 22092-22108; https://doi.org/10.3390/ijms151222092 - 1 Dec 2014
Cited by 54 | Viewed by 7982
Abstract
Transforming growth factor (TGF)-β1, a cytokine that can be expressed in the brain, is a key regulator of the brain’s responses to injury and inflammation. Alzheimer’s disease (AD), the most common neurodegenerative disorder, involves inflammatory processes in the brain in addition to the [...] Read more.
Transforming growth factor (TGF)-β1, a cytokine that can be expressed in the brain, is a key regulator of the brain’s responses to injury and inflammation. Alzheimer’s disease (AD), the most common neurodegenerative disorder, involves inflammatory processes in the brain in addition to the hallmarks, amyloid-β (Aβ) plaques and neurofibrillary tangles. Recently, we have shown that T-helper (Th) 17 cells, a subpopulation of CD4+ T-cells with high proinflammation, also participate in the brain inflammatory process of AD. However, it is poorly known whether TGF-β1 ameliorates the lymphocyte-mediated neuroinflammation and, thereby, alleviates neurodegeneration in AD. Herein, we administered TGF-β1 via the intracerebroventricle (ICV) in AD model rats, by Aβ1–42 injection in both sides of the hippocampus, to show the neuroprotection of TGF-β1. The TGF-β1 administration after the Aβ1–42 injection ameliorated cognitive deficit and neuronal loss and apoptosis, reduced amyloid precursor protein (APP) expression, elevated protein phosphatase (PP)2A expression, attenuated glial activation and alleviated the imbalance of the pro-inflammatory/anti-inflammatory responses of T-lymphocytes, compared to the Aβ1–42 injection alone. These findings demonstrate that TGF-β1 provides protection against AD neurodegeneration and suggest that the TGF-β1 neuroprotection is implemented by the alleviation of glial and T-cell-mediated neuroinflammation. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2014)
Show Figures

Figure 1

Back to TopTop