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Abstract: Insurmountable evidence has demonstrated a strong association between Alzheimer’s
disease (AD) and cerebral amyloid angiopathy (CAA), along with various other cerebrovascular
diseases. One form of CAA, which is the accumulation of amyloid-beta peptides (Aβ) along cerebral
vessel walls, impairs perivascular drainage pathways and contributes to cerebrovascular dysfunction
in AD. To date, CAA research has been primarily focused on arterial Aβ, while the accumulation of
Aβ in veins and venules were to a lesser extent. In this review, we describe preclinical models and
clinical studies supporting the presence of venular amyloid and potential downstream pathological
mechanisms that affect the cerebrovasculature in AD. Venous collagenosis, impaired cerebrovascular
pulsatility, and enlarged perivascular spaces are exacerbated by venular amyloid and increase
Aβ deposition, potentially through impaired perivascular clearance. Gaining a comprehensive
understanding of the mechanisms involved in venular Aβ deposition and associated pathologies
will give insight to how CAA contributes to AD and its association with AD-related cerebrovascular
disease. Lastly, we suggest that special consideration should be made to develop Aβ-targeted
therapeutics that remove vascular amyloid and address cerebrovascular dysfunction in AD.

Keywords: venular amyloid; Aβ; vein/venule; Alzheimer’s disease; cerebral amyloid angiopathy;
venous collagenosis; perivascular clearance; TgF344-AD rat model

1. Introduction

1.1. Alzheimer’s Disease

Cognitive decline, memory impairment, and loss of activities of daily living are a few of the
debilitating clinical symptoms of Alzheimer’s disease (AD), the most common form of dementia [1,2].
There exists two neuropathological hallmarks characteristic of disease; extracellular deposition of
Aβ peptide into amyloid plaques and accumulation of hyperphosphorylated tau into neurofibrillary
tangles within neurons [3,4]. Familial AD results from mutations in one of either the amyloid precursor
protein (APP) or presenilin-1/-2 genes (PS1/PS2) [5,6]. Overall, mutations in these genes cause an
overproduction of Aβ, specifically Aβ40/42, found in parenchymal Aβ plaques [1,4]. Familial AD
develops earlier than late onset AD (< 65 years), has a more severe clinical course, and is quite rare,
accounting for approximately 1–6% of all AD cases [7]. In contrast, late onset AD is the most common
form of AD with onset > 65 years, and a major focus in understanding the possible risk factors that
contribute to disease [4,8].

Aβ aggregates in the form of amyloid plaques within the brain parenchyma, typically spreading
through the cortex and eventually to the hippocampus [1,9], leading to synaptic loss, neuronal cell death,
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and brain atrophy [10,11]. This neurodegenerative process contributes to the dementia that is seen in AD
patients [12–14]. Although Aβ aggregation is one of the major drivers of AD, research has demonstrated
cerebrovascular dysfunction to be an important risk factor in late onset AD, occurring earlier than
cognitive decline and prior to Aβ deposition [15–18]. Cerebrovascular morphological alterations,
blood–brain barrier (BBB) dysfunction, reduced cerebral blood flow, and decreased vascular reactivity
are involved in AD [10,17,18]. Another pathological hallmark of AD that contributes to vascular
dysregulation is the presence of Aβdeposition in the walls of cerebral vessels, known as cerebral amyloid
angiopathy (CAA) [2]. The consequences of CAA, in combination with cerebrovascular dysfunction,
further contributes to dementia [1,10]. Therefore, it is of significant importance to understand the role
of the vasculature in AD, as well as elucidate how CAA contributes to disease progression.

1.2. Cerebral Amyloid Angiopathy

CAA is one of the most common forms of small vessel disease, defined as the pathological
alterations in the small cerebral blood vessels due to accumulation and deposition of a wide variety
of amyloid proteins [8,19]. Amyloid proteins are native proteins that undergo a conformational
abnormality, causing them to become highly insoluble and prone to aggregation [8,19,20]. In hereditary
CAA, there are numerous genetic mutations that give rise to the deposition of several amyloid proteins,
leading to severe clinical symptoms [19,20]. The APP Dutch mutation, of the single amino acid
substitution at residue 22 of the Aβ protein, is a genetic hallmark of the autosomal dominant condition,
hereditary cerebral hemorrhage with amyloidosis (HCHWA)-Dutch type, resulting in severe CAA
composing of both wild-type Aβ and the Dutch-type variant [19,20]. HCHWA-Dutch is a fatal disease
characteristic of cerebral hemorrhages, stroke, and vascular dementia [19–21]. Other genetic variants of
the APP gene include Swedish (KM670/671NL), Flemish (A692G), Iowa (D694N), and French (V715M)
mutations, and also result in a similar clinical presentation as HCHWA-Dutch [8,20,22]. Additionally,
mutations in the PS1 and PS2 genes contribute to severe CAA [19]. Other genetic modifications include
mutations in the cystatin C, transthyretin, and gelsolin genes, resulting in vascular amyloid deposition
leading to HCHWA-Icelandic Type, familial amyloid polyneuropathy/meningo-vascular amyloidosis,
and familial amyloidosis Finnish type, respectively [19,20]. Hereditary causes of CAA are reviewed in
more detail elsewhere [20]. Overall, hereditary CAA is rare, more severe in pathology, and commonly
has an earlier age of onset, in comparison to sporadic CAA [8,19,23,24].

In 1938, Scholz was the first to describe CAA in the brains of the elderly [25] and it was not
until 1954 that CAA was shown to be distinct from AD, as it was not associated with parenchymal
plaques [26]. However, it is important to note the high comorbidities between these disorders, with
prevalence of CAA in 80–90% of patients with AD [2,8,19,27]. Moreover, just as the apolipoprotein
E (ApoE) gene contributes to the disease progression of AD, ApoE is also a genetic risk factor for
sporadic CAA and cerebrovascular disease [10]. In particular, ApoE ε2 and ε4 alleles are known to
be associated with CAA, with extensive vascular Aβ deposition shown in CAA patients with either
allele; whereas ε2 has additionally demonstrated an increased risk of cerebral hemorrhages, despite its
known protective effects in AD [8,9,22].

CAA involves the aggregation and deposition of both Aβ40 and Aβ42 peptides [8,19,23,24]. Aβ40
is the predominant isoform in vascular amyloid, the inverse of which is observed in parenchymal
plaques; however, evidence suggests that Aβ42 is necessary to initiate CAA deposition [22,28].
Interestingly, the Aβ40:42 ratio in capillaries resembles that in parenchymal plaques and not arterial
or venular CAA [22,29]. This suggests that soluble Aβ42 acts as an initial seed of vascular Aβ, but
with disease progression Aβ42 deposits into parenchymal plaques. Perivascular clearance of primarily
smaller soluble Aβ peptides (i.e. Aβ40) facilitates their deposition along arteries and veins. In support
of this, Aβ peptides of 36 to 41 amino acids in length preferentially deposit in CAA, whereas Aβ
peptides of 42 and 43 amino acids preferentially deposit in plaques (reviewed in [22]).

It has been of recent interest to understand CAA and its involvement in cerebrovascular diseases,
as it is one of the major causes of intracerebral hemorrhages [8,21]. CAA manifests itself in several
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clinical features such as stroke, leukoaraiosos (i.e. white matter hyperintensities), ischemia, and
dementia [30–33]. Vascular Aβ deposition compromises the cerebrovasculature by weakening blood
vessels and increasing vascular resistance, predisposing these vessels to microinfarctions that cause
ischemia or hemorrhages [32,34]. Subsequently, vessel rupture and microbleeds occur in cases of CAA
regardless of whether patients have AD [22,35]. Since vascular amyloid (i.e. CAA) is involved in most
AD cases, it is of great import to understand the role of CAA to gain insight on how vascular amyloid
affects the neurovasculature, contributing to the debilitating clinical symptoms in AD patients.

2. Impaired Perivascular Clearance of Aβ

There is currently little to no solid evidence of overproduction of Aβ in late onset AD, suggesting
that the accumulation of Aβ is due to impairment of clearance [4,8,36]. There are several mechanisms
involved in the elimination of small solutes, such as Aβ, from the brain. Of these, the perivascular
drainage pathway has a pathological role in AD [24,37,38]. The perivascular drainage pathway is the
movement of small solutes along the interstitial fluid (ISF) and into the spaces that surround cerebral
microvessels, which are called perivascular spaces or Virchow-Robin spaces [31]. Currently, there
are two perivascular drainage pathways that have been proposed in the literature: the intramural
periarterial drainage pathway and the glymphatic clearance pathway [39,40].

The intramural periarterial drainage pathway, involves the bulk flow of ISF into the basement
membranes of capillaries and arteries that surround smooth muscle cells [4,39,41]. In CAA, amyloid
usually deposits along smooth muscle cells of the tunica media and basement membranes of the tunica
adventitia of artery walls, which is the site of the periarterial drainage [24,39]. This suggests that
poor clearance of this drainage pathway contributes to vascular Aβ deposition and CAA [34,41,42].
In addition, ApoE ε4 has also been associated with reduced perivascular drainage of Aβ along the
periarterial pathway [43]. The glymphatic clearance pathway involves the periarterial influx of cerebral
spinal fluid (CSF) entering the brain, which combines with ISF and moves along the venous perivascular
spaces of large cerebral veins [40,42]. Aquaporin 4 (AQP4) water channels located at the endfeet of
perivascular astrocytes largely support the bulk flow of CSF-ISF by facilitating influx of CSF through
the periarterial spaces, while promoting clearance of ISF through the perivenous pathway [39,40,42].
Soluble Aβ is one of the solutes that drains along the glymphatic clearance pathway [42] and recent
reports demonstrate this perivenous drainage to be impaired in AD [38,39]. We propose that no
drainage pathway within the brain acts in isolation and thus, dysfunction of either the periarterial
or the perivenous pathways would shift the clearance to the alternate pathway and strain existing
mechanisms potentially leading to increased deposition in that blood vessel.

Although both arteries and veins are involved in Aβ drainage, there has been controversy
regarding the distribution of Aβwithin different vessel walls. Pathological analyses demonstrated that
CAA leads to amyloid deposition along arteries and capillaries, with minimal involvement of veins
in the AD pathology [24,34]. Human pathological data have been questioned in regards to the lack
of consistent methods used to distinguish between arterioles and venules. The reliance on the ratio
between the vessel wall thickness to lumen diameter [44] may be flawed as this ratio can be altered
due to brain tissue processing [44]. Distinguishing between arterioles and venules is of particular
import to correctly identify the type of vessels involved in cerebrovascular pathologies. Accordingly,
the pathophysiology of the venous system should not be ignored when studying AD.

3. Evidence of Aβ in Veins and Venules

The venous system of the cerebrovasculature has had scarce attention in regards to understanding
the mechanisms involved in CAA, and, in association, AD [33]. Recently, there has been increased
importance in studying the pathology of veins and venules, not only in the context of AD or CAA,
but also in small vessel disease and dementia overall [30,45,46]. Venous pathology has been shown to
contribute to vascular dysfunction in AD, resulting in white matter hyperintensities and microinfarcts,
and potentially induction of ischemia [30,45–48]. However, more research is necessary to understand
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the role of veins and venules in AD and CAA. One controversial pathology of the venous system is
the presence of venular amyloid, the deposition of Aβ within veins and venules. As such, we discuss
evidence for the presence of amyloid in veins and venules, suggesting that all vessels play a role in
disease progression [27,49–51]. In addition, numerous reports demonstrate a suite of mechanisms
that involve a pathological role for veins in CAA and AD [27,30,47,50–52]. This section outlines the
evidence for venular amyloid in both animal models and clinical cases, in the context of AD and CAA.

3.1. Preclinical Models

Currently, in vivo animal studies have observed venular amyloid. The APP+PS1 rat model,
that shows extensive CAA, Aβ plaque formation, and behavioural alterations, demonstrated Aβ
deposits in leptomeningeal and cortical arteries, cortical capillaries, as well as severe deposition in
the leptomeningeal and cortical veins using immunohistochemical analyses [53]. In addition, there
were significant alterations in the veins including enlarged cortical veins and perivascular spaces, and
stenosis of collagen, tau, and Aβ [53]. These pathological features have also been identified clinically
in venous insufficiency and vasogenic edema, typically depicted as hyperintensities in magnetic
resonance imaging (MRI) [30,31,47,52,54,55].

Further studies identify Aβ in veins of TgF344-AD rats, that overexpress human Swedish APP
and PS1 with exon 9 excised [56]. TgF344-AD rats recapitulate AD progression in humans including
age-dependent cerebral amyloidosis, CAA, tau pathology, neuronal loss, and cognitive dysfunction [56].
In studying early neurovascular dysfunction, Joo and colleagues demonstrated that vascular Aβ
deposition was not exclusive to arterioles and can be found in venules to a lesser degree, at 9 months of
age [18]. Moreover, TgF3444-AD rats have a 51% decrease in vascular reactivity in venules in response
to hypercapnic conditions [18]. Here we show amyloid deposition in the veins of TgF344-AD rat
models at 16 months of age (Figure 1). The topography of these amyloid deposits are quite distinct
from deposition in arteries (Figure 1a); where venous Aβ deposits appear more globular and have
a patchy distribution (Figure 1b), whereas arteriolar Aβ possessed a ‘double-barreling’ morphology,
forming striped rings, which is in correspondence with previous literature [19,27,57]. Since Joo and
colleagues showed significantly less amyloid deposition in veins and venules relative to arteries and
arterioles [18], we propose an age-dependent association between arterial (Figure 1a) and venular
amyloid (Figure 1b). However, further research is necessary to understand the interplay between these
amyloid deposits as age and AD progresses.
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Figure 1. Presence of venular amyloid in 16-month old TgF344-AD rats. Immunofluorescence imaging
of vascular amyloid deposition, stained by Thioflavin S (Thio-S, green), in cortical penetrating vessels
(Lectin, red). Amyloid beta peptide (Aβ) deposits present a ‘double-barreling’ morphology, forming
cyclical rings surrounding the arteries (a). Venular Aβ is present as smaller, globular deposits along the
veins (b). Arteries were distinguished from veins by presence of alpha smooth muscle actin (α-SMA,
white). Scale bar = 100 µm.
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Mouse models have demonstrated impairment and/or suppression of both the periarterial drainage
pathway and the glymphatic clearance pathway in AD [37,38,58]. Intracerebral injections of a dextran
tracer were performed in 3-, 7-, and 22-month old Tg2576 mice, a model of AD overexpressing the
human Swedish APP mutation [37]. Hawkes and colleagues demonstrated that a 3-kDa dextran almost
exclusively drains along the basement membranes of capillaries and arteries in non-transgenic mice,
with little to no drainage in veins [37,41]. In agreement, an AD mouse model with the overexpression
of the London mutation within the human APP gene exhibited significant Aβ deposition along the
walls of arteries but sparse deposition along veins [59]. However, most striking in the Tg2576 AD mice,
not only were capillaries and arteries positive for dextran in all ages, but dextran-positive staining
along veins was detected at 22 months of age [37]. These results suggest that Aβ deposition in arteries
and capillaries can exacerbate periarterial drainage altering the nascent clearance route of solutes from
the brain [37]. An alternate explanation for the presence of dextran, and potentially Aβ, along veins
may be impaired glymphatic drainage with aging [38,58].

One report demonstrated venular amyloid in APP/PS1/Cx3cr1 mice presenting as small, globular
Aβ aggregates in veins at 5 months of age and at 9 months of age, along with the presence of the
ring-like Aβ deposition in arteries [27]. Michaud and colleagues proposed that the Aβ deposits in veins
precede arterial Aβ deposition [27], which is contrary to previous findings [18,37,53,59]. In addition,
Michaud and colleagues demonstrated preferential adherence of monocytes to surrounding Aβ-laden
veins, but not arteries, and that these monocytes internalize venular amyloid for removal into the
bloodstream [27]. This work proposes underlying mechanisms that contribute specifically to clearance
of Aβ via veins and venules and further raises the question about the knowledge gap regarding the
relationship between Aβ deposition in arteries/ arterioles versus veins/ venules.

Preclinical studies showed venular amyloid in multiple models of AD but was observed to a
lesser extent compared to arterial CAA. We previously proposed two models that may explain the
lower presence of amyloid in veins and venules, despite the important role of veins in the glymphatic
drainage system [39]. The first is that the lack of the highly organized smooth muscles cells in veins and
venules result in less substrates for Aβ deposition and, secondly, monocytes that exclusively adhere
to veins might clear Aβ as it deposits along the venular walls [4,27,39]. In addition to the preclinical
models discussed above, there are reports that do not distinguish between arteries and veins [60–64],
or exclusively report of CAA in arteries [65,66]. Therefore, the present findings in this section address
the need for characterization of all cerebral vessels to accurately gain a comprehensive understanding
of both arterial and venous CAA.

3.2. Clinical Evidence

Cases of venular amyloid deposition have been reported as early as the 1980s, where 45 patients
were studied to determine the relationship between vascular amyloid and amyloid plaques [49].
The proportion of Aβ deposition in each vessel was recorded according to a severity measurement,
0–4, now termed as the Mountjoy scale [49,50]. Mountjoy and colleagues determined the presence of
amyloid not only in arteries, but in veins of 21 patients, as depicted by Congo Red staining, with one
case having severe amyloid deposition in veins [49].

Weller and colleagues also demonstrated Aβ deposition in veins, although to a lesser extent
compared to arterial Aβ deposition [24,34]. In one case study, 17 AD brains were examined to determine
Aβ deposition in accordance with perivascular drainage. The leptomeningeal vessels were stripped
from the surface of the brain and were stained with Thioflavin S to quantify amyloid deposition in 681
arteries and 352 veins. Aβ deposition demonstrated a 5:1 distribution in arteries compared to veins,
with approximately 4.5% of veins positive for amyloid [34]. In a clinical case study of AD, Weller and
colleagues also observed Aβ deposition in the walls of veins in the presence of severe CAA [24]. As very
little Aβ deposits were detected in these veins, Weller and colleagues considered these deposits as rare,
and attributed the CAA pathology to impaired clearance of the periarterial drainage pathway [24].
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Current disease models suggest that even when rare, venular Aβ can impair glymphatic clearance,
contribute to Aβ deposition, and exacerbate CAA and AD progression [22,24,34,39,40,42].

In contrast, a neuropathological study of 69 human autopsy brains assessed the distribution
of Aβ deposition across different vessels and the association with pathological features such as
CAA severity and AD-related Aβ pathology [51]. Two types of CAA were identified; CAA Type 1
and CAA Type 2, which were associated with the presence and absence of capillary Aβ deposition,
respectively. An important observation in this study was that both CAA types showed Aβ deposition
in leptomeningeal and cortical veins, suggesting that CAA is not exclusive to arteries, but also in veins
and differentially in capillaries [51].

A recent paper examined the potential venular involvement in intracerebral hemorrhages [50].
All 41 patients showed the presence of CAA, as demonstrated by both Congo red and anti-Aβ(8–17)
immunohistochemical staining. The severity of the vascular Aβ deposition was determined by the
Vonsattel scale and the proportion of Aβ in each vessel was recorded based on the Mountjoy scale [49].
Of the 41 cases, 33 patients had Aβ deposits in veins, 15 of which showed severe CAA, 13 showed
moderate CAA, and the remaining 5 patients showed mild CAA [50]. In light of the involvement
of moderate and severe CAA associated with venular amyloid deposition, these data support our
hypothesis that dysfunction of either the periarterial or the perivenuous pathways would shift clearance
to the alternate pathway and strain existing mechanisms potentially leading to increased deposition in
that blood vessel.

Overall, venular amyloid has been understudied with respect to vascular mechanisms involved
in AD. Despite this, the involvement of venous and venular pathology in cerebral microinfarction and
other cerebrovascular diseases have indicated that veins and venules play a strong role in contributing
to dementia [30,46]. Moreover, compromise in the functional role of the venous system could in part be
a major factor in impairing solute clearance from the brain, leading to vascular Aβ deposition [16,30].
Therefore, studies elucidating the relationship between pathology in veins and venules with Aβ
deposition is of high interest.

4. Contribution of Venular Amyloid to Alzheimer’s Disease (AD) Pathogenesis

In this review so far, we have proposed that accumulation of Aβ along the venous system occurs to
a greater degree than previously thought. Venular amyloid is likely an integral part of AD pathogenesis,
and similar to arterial amyloid, contributes to cerebrovascular dysfunction and failure of Aβ clearance
mechanisms (Figure 2). In this section, we will discuss how venous collagenosis, arterial and venular
pulsation impairments, and enlargements in the perivascular space may contribute to the accumulation
of venular amyloid, and vice versa (Figure 2). We propose that Aβ deposition in the venular system
acts in a positive feedback manner, similar to arterial CAA, to increase vascular Aβ deposition from
impaired ISF efflux, and impair the cerebrovascular network.

Microinfarcts and small vessel disease commonly occur in AD patients, impairing cognition
and increasing risk for stroke [30,67]. Recently, blockage of a single venule in mice vastly impaired
cerebrovascular structure and function [46,68]. Acute venular occlusion in the mouse cortex decreases
blood flow, increases vessel diameter, impairs local neuronal function and neurovascular coupling,
induces severe hypoxia, and can cause somatosensory behavioural deficits [69–71]. Interestingly,
even though mice have 2-3x more cortical penetrating venules than arterioles, the occlusion of a
single venule had a profound impact, indicating the potentially compounding effect of venular
amyloid [46,68,72]. Conversely, humans have less venules for every arteriole [46], suggesting a greater
strain on each individual venule. Therefore, venular amyloid, with the associated collagenosis and
vascular impairments in AD, likely accelerates disease progression.
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Figure 2. The pathological role of vascular Aβ deposition on arteries and veins. This schematic
summarizes the effects of Aβ (red) accumulation on cerebral vessels, relative to physiological conditions.
In physiological conditions, soluble Aβ can be cleared from the brain into the vessel lumen and along
the perivascular spaces of arteries and veins. In pathological arteries, Aβ is deposited along the smooth
muscle cells and basement membranes, forming a ‘double-barreling’ morphology surrounding the
vessel, resulting in arterial smooth muscle and endothelial cell loss. In pathological veins, the Aβ
deposition is distinct, forming globular deposits in perivascular spaces. Venular Aβ contributes to
extensive venous collagenosis (dark blue) in the form of concentric rings along venular walls, significant
enlargement of the perivascular space, and endothelial cell loss. These pathological features in arteries
and veins exacerbate Aβ accumulation, ultimately causing vascular and cognitive dysfunction in cases
of cerebral amyloid angiopathy (CAA) and Alzheimer’s disease (AD). Image not to scale. Image by
Sherry Lai.

4.1. Venous Collagenosis

Venous collagenosis was first described in the mid 1990s as a non-inflammatory mural disease
and collagenous thickening of the walls of periventricular venules and veins, associated with cases of
leukoaraiosis and with aging [52,54]. Leukoariosis, also referred to as white matter hyperintensities, are
MRI- and computed tomography-detectable markers of cerebrovascular dysfunction [30,54]. Moody
and colleagues discovered collagenosis in the venules of 65% of people over 60 years of age histologically
by excessive collagen accumulation and the replacement of venular mural cells with collagen. Vein and
venule walls were thickened and exhibited concentric rings of collagen [52,54]: specifically, collagen
1 and 3 accumulated excessively in venular walls, indicative of hyalinization [16,73]. Collagenosis
can occlude veins in individuals with leukoaraiosis, even in those who present with normal afferent
vessels, and have profound effects on the cerebrovascular system, including impairment of perfusion
pressure and blood flow [46,52,54]. Moody and colleagues originally observed collagenosis specifically
on efferent vessels, not on capillaries or arterioles, which was most severe and abundant in the
periventricular venular walls [52,54]. However, venous collagenosis was also detected in connected
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regions and in the cortex [54,73], suggesting that additional triggers such as amyloid could exacerbate
collagenosis throughout the brain.

More recently, Keith and colleagues examined brains of AD patients for periventricular venous
collagenosis and venous stenosis both of which positively correlated with and predicted the severity of
white matter hyperintensities, a common AD-related cerebrovascular dysfunction [47,74]. Additionally,
MRI images of periventricular white matter hyperintensities demonstrate the presence of venules
within these lesions [30,55], suggesting an association with venous collagenosis. Keith and colleagues
separated veins into small ( < 50 µm diameter), medium (50–150 µm diameter), and large (>200
µm diameter) vessels. Venous walls appeared thickened by the presence of collagen, and small and
medium veins exhibited a greater collagen:lumen ratio, which positively correlated with severity of
white matter hyperintensities. Large veins with prominent collagenosis were selected and percent
stenosis was assessed by comparing the internal vessel diameter with the external (includes collagenous
deposits) [47]. Overall, significant collagenosis and stenosis of the venous system, in particular in
the deep medullary veins, occurred in AD patients [47]. In combination with the results described
by Moody and colleagues, these data indicate that venous collagenosis is enhanced by both age
and AD-related pathology, such as white matter hyperintensities, and can impair cerebrovascular
structure, cause venous insufficiency, increase fluid leakage/vasogenic edema, and occlude blood
flow [30,46,47,52,54,55,75–77].

Evidence of venous collagenosis in AD preclinical models is limited to a single report in the
APP+PS1 rat model, which present with severe cortical and leptomeningeal venular Aβ deposition [53].
Subsequently, these rats recapitulate collagenosis of the venous system as it was described in
humans [47,52]. In APP+PS1 rats, venous collagenous leptomeningeal, cortical, hippocampal and
cerebellar deposits and concentric stenosis associate with Aβ deposition [53]. Enlargements in the
area of vascular and perivascular spaces, as well as increased neuronal necrosis in the surrounding
area demonstrate the extent of cerebrovascular impairments [53], which can contribute to functional
deficits and to an increased Aβ deposition from impaired clearance mechanisms [30,31,40,78].

The mechanisms by which venular amyloid deposition or venous collagenosis begin are not entirely
understood. However, it is possible that glymphatic clearance of CSF-ISF along veins allows soluble
Aβ to deposit in perivascular spaces and venular walls, similar to what is proposed for arterial CAA.
This in turn will impair cerebrovascular function and exacerbate hyalinization of venules [42,46,73,78].
Interestingly, venous collagenous deposits in APP+PS1 rats were positive for the presence of Aβ
and tau in immunohistochemical staining [53], suggesting that the deposition of Aβ may increase
the deposition of collagen on venules, and vice versa. Additionally, oxidative stress and leukocyte
adhesion have been implicated in the initiation of venous collagenosis, which are reviewed in [46].
Briefly, monocytes, which are known to adhere to Aβ-positive veins, can release reactive oxidative
species that impair the venous system [27,46,79]. Finally, as a result of venular amyloid, collagen
deposition will initiate structural and functional alterations in these vessels (Figure 2), specifically
enlargements in the perivascular space, and alterations in pulsatility and blood flow, culminating
in impaired perivenous Aβ clearance which further exacerbates vascular Aβ deposition and drives
AD pathogenesis.

4.2. Cerebrovascular Pulsatility

Blood vessel wall rigidity and stiffness decrease blood flow through the cerebrovascular system.
AD-related arterial CAA and venous collagenosis increase afferent vessel pulsatility and efferent vessel
resistance, respectively [30,34,54]. Arterial Aβ stiffens vessels and forms highly rigid vessel walls,
thereby increasing pulsatility [34,80,81]. When this high-pressure blood flows into the AD venous
system it is met with high resistance from amyloid and collagen deposits [30,53,54], causing physical
stress on venules [82]. Criswell and colleagues investigated arterioles and venules in aged canine
brains and determined how regional differences in vessel structure impacts venular resistance and
increased venous collagenosis [83]. Specifically, periventricular white matter venules demonstrated
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approximately half the intramural cells when compared to subcortical white matter venules, indicating
a lower baseline vessel wall resistance. Because of lower resistance, there is an increased susceptibility
to stress from arterial pulsatility in periventricular venules, offering a potential explanation for severe
age-related collagenosis in these vessels [52,83]. In the context of AD-like pathology, it is possible that
this effect is further exacerbated by arterial and venular Aβ [34,51], since Aβ40 is directly toxic to
pericytes in vitro [84–86]. Loss of venular mural cells, which are primarily pericytes, has been well
demonstrated in AD rodent models [18,45], and mural cell loss associates with cognitive decline in AD
patients [87,88].

Furthermore, cerebrovascular Aβ directly correlates with impairments in vessel pulsation
and resistance in AD [81]. Utilizing transcranial color-coded duplex sonography, Ortner and
colleagues determined that high pulsatility and resistance indices in the middle cerebral arteries
associated with increased cognitive impairments and positive amyloid status in AD and mild
cognitively impaired patients, compared with healthy controls. This effect was independent of
structural microvascular damage (i.e. atherosclerosis) as no decreases were detected in the retinal
arteriolar-venular ratio [81]. However, it is possible that narrowing of arterioles as well as venules,
from amyloid and collagenosis [34,54], caused the ratio to remain the same as in healthy controls. In
support of this, AD patients exhibit increased pulsatility and resistance in a variety of both afferent
vessels, including the middle cerebral artery and internal carotid artery, and efferent vessels, including
the superior sagittal, straight and transverse sinuses, visualized with 4D flow MRI [89,90].

Recently, van Veluw and colleagues demonstrated that clearance of an injected fluorescein dextran
can be enhanced by evoking arterial vasomotion at 0.1 Hz, with visual stimuli. This frequency of
vasomotion occurs spontaneously in arterials, and correlates with ISF clearance [91–93]. Interestingly,
AD mice with CAA do not exhibit enhanced clearance from evoked vasomotion, likely as a result of
Aβ-related arterial stiffness, tortuosity and impaired pulsatility and resistance indices [16,57,81,89–91].
The authors did not observe 0.1 Hz spontaneous vasomotion in venules [91]; however, venular
vasomotion from longer stimulations and/or a delayed response to arterial blood flow [92] may
associate with and enhance perivenous ISF clearance [42,78]. Glymphatic perivenous clearance of
the MRI contrast agent gadobutrol has recently been documented in humans. Meng and colleagues
delivered gadobutrol to the ISF with MRI-guided focused ultrasound and observed clearance through
the venular perivascular space, subarachnoid space and around draining veins [94]. Overall, vasomotive
forces drive ISF clearance, and are impacted by Aβ accumulation and AD-related cerebrovascular
dysfunction. With venular amyloid and collagenosis there are dysfunctional vessel pulsations and
decreased blood flow through the brain, which contribute to reduced periarterial and perivenous ISF
solute clearance with AD progression.

4.3. Enlargements in the Perivascular Space

Soluble Aβ in the ISF clears from the brain within arterial and venous perivascular spaces
(also referred to as Virchow-Robin spaces) which surround small cerebral vessels [31,39,41,42,78].
Flow through these fluid-filled compartments is impeded by perivascular accumulation of cellular
debris, as well as from amyloid and collagen aggregates on vessel walls. A loss of perivascular AQP4
channels occurs in AD patients, indicating reduced glymphatic CSF-ISF exchange and flow [31,95–97].
Finally, perivascular spaces are enlarged with age and AD pathology, and become visually detectable
on MRI scans [31,98,99].

Banerjee and colleagues suggest that MRI-visible perivascular spaces in Alzheimer’s disease
are a result of cerebrovascular dysfunction, specifically small vessel disease co-morbidities, as they
observed no association between amyloid burden and perivascular space enlargement [99]. However,
others have reported strong associations; amyloid positron emission tomography (PET) and
histopathology measurements colocalized with enlarged cortical perivascular spaces in cases of
CAA and AD [97,98,100,101]. Support for this is seen in APP+PS1 rats, which exhibit a 1.7-fold
increase in the perivascular space along frontal cortical vessels. Since this is an Aβ-driven model with
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venular amyloid, enlargements in the perivascular space are likely driven by Aβ [53]. Additionally,
tortuosity, a common cerebrovascular structural abnormality common in leukoaraiosis and AD, creates
cavities in the surrounding brain parenchyma [16], potentially contributing to enlarged perivascular
spaces. In the TgCRND8 mouse model of AD, arterial tortuosity occurs as a direct result of arterial
Aβ deposition [57], and venular tortuosity occurs from pharmacological depletion of mural cells,
which are lost in AD patients [45,87,88]. Therefore, vascular amyloid accumulation contributes to the
enlargement of perivascular spaces, and through impaired Aβ clearance, enlarged perivascular spaces
likely enhance vascular Aβ deposition.

Venular amyloid and associated dysfunction in the venous system, including collagenosis, high
pulsatility and resistance indices, and enlarged perivascular spaces, impair the efflux of ISF and Aβ
from the brain, and thereby act in a positive-feedback loop exacerbating Aβ deposition and vascular
dysfunction (Figure 2). Considering that vascular deficits are common co-morbidities of AD [16,30],
there is a need for effective AD therapeutics that target the removal of vascular amyloid.

5. Limited Efficacy of Aβ-Targeted Therapeutics on Vascular Amyloid

Aβ-targeted treatments have been a focal point of AD therapeutic design for the last two decades.
Despite some recent success with Aducanumab reducing cognitive decline, this class of therapeutics
have been limited in disease modifying and clinically beneficial effects. Potential explanations
include that Aβ-targeted therapeutics were characterized in primarily Aβ-driven preclinical models,
targeted too late in disease progression in AD patients, and that the contributions of tau pathology to
neurodegeneration and cognitive impairment persist with Aβ attenuation [13]. However, one mostly
overlooked factor is that most Aβ-targeted therapeutics do not remove vascular amyloid.

The first Aβ immunotherapy to enter the clinic for AD was AN-1792, which involved active
immunization with the full-length Aβ peptide. AN-1792 led to acute and long-term reduction of
parenchymal Aβplaques, exhibiting almost complete plaque clearance 14 years after treatment [102,103].
However, vascular amyloid was not attenuated and there was persistent and severe CAA in most
patients [102,103]. Cerebral cortical and leptomeningeal vessel walls exhibited more complete Aβ
coverage and a significantly greater number of Aβ42 positive vessels (14× and 7×more, respectively) in
immunized compared to non-immunized AD patients [104]. Interestingly, Aβ42 is normally absent in
vascular amyloid deposits, and therefore these results suggest that Aβ is solubilized from parenchymal
plaques and accumulates along blood vessels during ISF clearance [41,42,104,105]. Conversely,
Bapineuzumab passive immunization of an antibody to the same Aβ antigenic site in AD patients
reduced CAA on amyloid PET imaging, but was associated with a large degree of amyloid-related
imaging abnormalities and vasogenic edema, with no clinical cognitive benefit [106–108], reviewed
in [109]. Considering how venular amyloid-related impairments (i.e. collagenosis, impaired blood
pulsation/flow, enlarged perivascular spaces) can impair clearance and increase vascular Aβ deposition,
Aβ-targeted therapeutics going forward should be designed to reduce vascular amyloid as well.

The only passive Aβ immunotherapy directly investigated for CAA was Ponezumab,
which specifically targets vascular Aβ. Ponezumab is a monoclonal antibody against Aβ40 [110,111],
which is the primary Aβ species in CAA [19,105]. Initial results in AD rodent models with CAA
were promising, including the reduction of Aβ-positive leptomeningeal and cortical vessels, reduced
vascular soluble Aβ40 and Aβ42, improved hypercapnic response, and only transiently increased
Aβ40 in the ISF, indicating functioning perivascular/glymphatic Aβ clearance [110]. However, in cases
of probable CAA, Ponezumab treatment exacerbated impairments in cerebrovascular reactivity in
response to visual stimuli, measured by blood–oxygen-level-dependent functional MRI signal in
the visual cortex [111]. CAA was not assessed, but results suggest that target engagement was
limited [111,112]. The Ponezumab results reveal the complicated nature of targeting vascular Aβ in
CAA and AD, and demonstrate the potential need for alternatives to Aβ immunotherapy.

Another class of Aβ-targeted therapeutics are beta-site APP cleaving enzyme 1 (BACE1;
β-secretase) inhibitors which reduce the production of Aβ [113]. BACE1 is expressed in cerebrovascular
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associated cells on leptomeningeal and cortical vessels, including smooth muscle and endothelial
cells [114]. Furthermore, leptomeningeal vessels extracted from patients with CAA exhibit elevated
BACE1 levels and activity [114]. Thus, data demonstrate a potential role of BACE1 in vessel-localized Aβ
production and vascular Aβ deposition. The BACE1 inhibitor NB-360 attenuates Aβ in preclinical AD
models [115,116], and was recently investigated in the APPDutch CAA mouse model [117]. APPDutch
mice develop leptomeningeal and cortical CAA composed primarily of Aβ40, without exhibiting
parenchymal plaques. It is unconfirmed whether venular amyloid is present in this model [117,118].
NB-360 treatment at the age of CAA onset reduced score, frequency, and severity of CAA measured
by immunohistochemistry, with a 90% reduction of CSF Aβ [117]. Importantly, once cleared from
the blood vessels, Aβwas not deposited in parenchymal plaques [117]. Smooth muscle cell loss was
attenuated and microhemorrhages were not exacerbated by NB-360 treatment [117,119], indicating
rescue of amyloid-associated cerebrovascular impairment. More work is needed to determine the
efficacy of NB-360 as a therapeutic intervention when CAA has already accumulated. Currently, BACE1
inhibitors have failed to improve cognition in AD patients [120], and therefore these results demonstrate
the potential role for BACE1 inhibitors specifically in cases of CAA and warrant further investigation.

6. Conclusions

Most cases of AD exhibit presence of cerebrovascular amyloid (i.e. CAA) and are often co-morbid
with cerebrovascular diseases [8,30]. To date, research has attributed CAA to pathology in arteries and
arterioles, with veins having a minimal role [24,34]. However, several papers have presented data
demonstrating vascular amyloid in veins and venules in both preclinical animal models and clinical
case studies [27,50,51,53]. In preclinical models, the presence of venular amyloid, in combination with
the decreased vascular reactivity [18] and venular degeneration [45] further supports the potential role
of the draining vessels in AD.

Despite the differences in preclinical experiments, clinical studies of venular amyloid provides
evidence for the involvement of veins in CAA severity and AD [24,34,50,51]. We highlight several
mechanisms that may increase venular amyloid deposition and contribute to venular pathology.
Venous collagenosis, impaired cerebrovascular pulsatility and vasomotion, and enlarged perivascular
spaces contribute to AD-related cerebrovascular dysfunction and may be associated with arterial
and venular amyloid, suggesting further disturbance in the clearance of Aβ along the perivascular
drainage pathway (Figure 2) [30,47,53,54,81,99]. Overall, we propose that these mechanisms act in a
positive-feedback loop, promoting venular Aβ deposition and vice versa.

Herein, we propose venular amyloid is an integral part of AD pathology, and that numerous
mechanisms related to the pathophysiology of veins (i.e. venous collagenosis, impaired cerebrovascular
pulsatility, enlarged perivascular spaces) may lend further insight into the cerebrovasculature
dysfunction in AD. This critical role of vascular pathology could help explain the limited efficacy of
Aβ-targeted therapeutics, as they typically do not remove vascular amyloid. Improvements in arterial
and venular classifications, appropriate choices of preclinical models and treatment design oriented
towards removing vascular Aβ, will benefit CAA and AD research going forward. Recognizing the
importance of venular, as well as arterial, amyloid in AD pathogenesis will be integral to increase
treatment specificity and efficacy, and to gain a comprehensive understanding of disease progression.
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Abbreviations

α-SMA alpha-smooth muscle actin
Aβ amyloid-beta
AD Alzheimer’s disease
APP amyloid precursor protein
AQP4 aquaporin 4
BACE1 beta-site amyloid precursor protein cleaving enzyme 1
BBB blood–brain barrier
CAA cerebral amyloid angiopathy
CSF cerebrospinal fluid
HCHWA hereditary cerebral hemorrhage with amyloidosis
ISF interstitial fluid
MRI magnetic resonance imaging
PET positron emission tomography
PS1/PS2 presenilin-1/ -2
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