Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Super C+L band

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2461 KiB  
Article
A Throughput Analysis of C+L-Band Optical Networks: A Comparison Between the Use of Band-Dedicated and Single-Wideband Amplification
by Tomás Maia and João Pires
Electronics 2025, 14(13), 2723; https://doi.org/10.3390/electronics14132723 - 6 Jul 2025
Viewed by 304
Abstract
Optical networks today constitute the fundamental backbone infrastructure of telecom and cloud operators. A possible medium-term solution to address the enormous increase in traffic demands faced by these operators is to rely on Super C+ L transmission optical bands, which can offer a [...] Read more.
Optical networks today constitute the fundamental backbone infrastructure of telecom and cloud operators. A possible medium-term solution to address the enormous increase in traffic demands faced by these operators is to rely on Super C+ L transmission optical bands, which can offer a bandwidth of about 12 THz. In this paper, we propose a methodology to compute the throughput of an optical network based on this solution. The methodology involves detailed physical layer modeling, including the impact of stimulated Raman scattering, which is responsible for energy transfer between the two bands. Two approaches are implemented for throughput evaluation: one assuming idealized Gaussian-modulated signals and the other using real modulation formats. For designing such networks, it is crucial to choose the most appropriate technological solution for optical amplification. This could either be a band-dedicated scheme, which uses a separate amplifier for each of the two bands, or a single-wideband amplifier capable of amplifying both bands simultaneously. The simulation results show that the single-wideband scheme provides an average throughput improvement of about 18% compared to the dedicated scheme when using the Gaussian modulation approach. However, with the real modulation approach, the improvement increases significantly to about 32%, highlighting the benefit in developing single-wideband amplifiers for future applications in Super C+L-band networks. Full article
(This article belongs to the Special Issue Optical Networking and Computing)
Show Figures

Figure 1

23 pages, 25322 KiB  
Article
Prediction of Winter Wheat Parameters with Planet SuperDove Imagery and Explainable Artificial Intelligence
by Gabriele De Carolis, Vincenzo Giannico, Leonardo Costanza, Francesca Ardito, Anna Maria Stellacci, Afwa Thameur, Sergio Ruggieri, Sabina Tangaro, Marcello Mastrorilli, Nicola Sanitate and Simone Pietro Garofalo
Agronomy 2025, 15(1), 241; https://doi.org/10.3390/agronomy15010241 - 19 Jan 2025
Cited by 1 | Viewed by 2806
Abstract
This study investigated the application of high-resolution satellite imagery from SuperDove satellites combined with machine learning algorithms to estimate the spatiotemporal variability of some winter wheat parameters, including the relative leaf chlorophyll content (RCC), relative water content (RWC), and aboveground dry matter (DM). [...] Read more.
This study investigated the application of high-resolution satellite imagery from SuperDove satellites combined with machine learning algorithms to estimate the spatiotemporal variability of some winter wheat parameters, including the relative leaf chlorophyll content (RCC), relative water content (RWC), and aboveground dry matter (DM). The research was carried out within an experimental field in Southern Italy during the 2024 growing season. Different machine learning (ML) algorithms were trained and compared using spectral band data and calculated vegetation indices (VIs) as predictors. Model performance was assessed using R2 and RMSE. The ML models tested were random forest (RF), support vector regressor (SVR), and extreme gradient boosting (XGB). RF outperformed the other ML algorithms in the prediction of RCC when using VIs as predictors (R2 = 0.81) and in the prediction of the RWC and DM when using spectral bands data as predictors (R2 = 0.71 and 0.87, respectively). Model explainability was assessed with the SHAP method. A SHAP analysis highlighted that GNDVI, Cl1, and NDRE were the most important VIs for predicting RCC, while yellow and red bands were the most important for DM prediction, and yellow and nir bands for RWC prediction. The best model found for each target was used to model its seasonal trend and produce a variability map. This approach highlights the potential of integrating ML and high-resolution satellite imagery for the remote monitoring of wheat, which can support sustainable farming practices. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

12 pages, 3294 KiB  
Article
Oxygen Vacancies in Bismuth Tantalum Oxide to Anchor Polysulfide and Accelerate the Sulfur Evolution Reaction in Lithium–Sulfur Batteries
by Chong Wang, Jian-Hao Lu, An-Bang Wang, Hao Zhang, Wei-Kun Wang, Zhao-Qing Jin and Li-Zhen Fan
Nanomaterials 2022, 12(20), 3551; https://doi.org/10.3390/nano12203551 - 11 Oct 2022
Viewed by 2288
Abstract
The shuttling effect of soluble lithium polysulfides (LiPSs) and the sluggish conversion kinetics of polysulfides into insoluble Li2S2/Li2S severely hinders the practical application of Li-S batteries. Advanced catalysts can capture and accelerate the liquid–solid conversion of polysulfides. [...] Read more.
The shuttling effect of soluble lithium polysulfides (LiPSs) and the sluggish conversion kinetics of polysulfides into insoluble Li2S2/Li2S severely hinders the practical application of Li-S batteries. Advanced catalysts can capture and accelerate the liquid–solid conversion of polysulfides. Herein, we try to make use of bismuth tantalum oxide with oxygen vacancies as an electrocatalyst to catalyze the conversion of LiPSs by reducing the sulfur reduction reaction (SRR) nucleation energy barrier. Oxygen vacancies in Bi4TaO7 nanoparticles alter the electron band structure to improve instinct electronic conductivity and catalytic activity. In addition, the defective surface could provide unsaturated bonds around the vacancies to enhance the chemisorption capability with LiPSs. Hence, a multidimensional carbon (super P/CNT/Graphene) standing sulfur cathode is prepared by coating oxygen vacancies Bi4TaO7−x nanoparticles, in which the multidimensional carbon (MC) with micropores structure can host sulfur and provide a fast electron/ion pathway, while the outer-coated oxygen vacancies with Bi4TaO7−x with improved electronic conductivity and strong affinities for polysulfides can work as an adsorptive and conductive protective layer to achieve the physical restriction and chemical immobilization of lithium polysulfides as well as speed up their catalytic conversion. Benefiting from the synergistic effects of different components, the S/C@Bi3TaO7−x coin cell cathode shows superior cycling and rate performance. Even under a high level of sulfur loading of 9.6 mg cm−2, a relatively high initial areal capacity of 10.20 mAh cm−2 and a specific energy density of 300 Wh kg−1 are achieved with a low electrolyte/sulfur ratio of 3.3 µL mg−1. Combined with experimental results and theoretical calculations, the mechanism by which the Bi4TaO7 with oxygen vacancies promotes the kinetics of polysulfide conversion reactions has been revealed. The design of the multiple confined cathode structure provides physical and chemical adsorption, fast charge transfer, and catalytic conversion for polysulfides. Full article
Show Figures

Figure 1

12 pages, 15150 KiB  
Article
Experimental and Simulation Analysis of Warm Shearing Process Parameters for Rolled AZ31B Magnesium Alloy Plate
by Yue Meng, Lifeng Ma and Weitao Jia
Crystals 2022, 12(5), 661; https://doi.org/10.3390/cryst12050661 - 5 May 2022
Cited by 1 | Viewed by 1985
Abstract
The study was carried out on a KRUMAN-CLS1016-NC shearing machine at a shear temperature of 20 °C to 250 °C and a shear edge clearance of 8% to 10% for a rolled AZ31B magnesium alloy plate with a thickness of 8.35 mm. The [...] Read more.
The study was carried out on a KRUMAN-CLS1016-NC shearing machine at a shear temperature of 20 °C to 250 °C and a shear edge clearance of 8% to 10% for a rolled AZ31B magnesium alloy plate with a thickness of 8.35 mm. The height and area share of the bright zone in the shear section were analyzed by macroscopic measurements and super depth-of-field experiments, and combined with DEFORM-3D finite element simulations, the optimal shear program was determined using the orthogonal experimental method. It was found that, with the increase of shear temperature and shear edge clearance, the height and area of the burnish band first increased and then decreased. In addition, from the simulated orthogonal test, it can be obtained that the effect of shear temperature on the height of the burnish band is superior to that of the shear edge gap, so the selection of shear temperature is preferred. In this paper, the shear temperature of 150 °C and the shear edge clearance of 12% were finally determined as the best shear process parameters for the rolled AZ31B magnesium alloy sheet. Full article
(This article belongs to the Special Issue State-of-the-Art Magnesium Alloys)
Show Figures

Figure 1

29 pages, 11972 KiB  
Article
Design and Analysis of Super Wideband Antenna for Microwave Applications
by Warsha Balani, Mrinal Sarvagya, Ajit Samasgikar, Tanweer Ali and Pradeep Kumar
Sensors 2021, 21(2), 477; https://doi.org/10.3390/s21020477 - 12 Jan 2021
Cited by 69 | Viewed by 8543
Abstract
In this article, a compact concentric structured monopole patch antenna for super wideband (SWB) application is proposed and investigated. The essential characteristics of the designed antenna are: (i) to attain super-wide bandwidth characteristics, the proposed antenna is emerged from a traditional circular monopole [...] Read more.
In this article, a compact concentric structured monopole patch antenna for super wideband (SWB) application is proposed and investigated. The essential characteristics of the designed antenna are: (i) to attain super-wide bandwidth characteristics, the proposed antenna is emerged from a traditional circular monopole antenna and has obtained an impedance bandwidth of 38.9:1 (ii) another important characteristic of the presented antenna is its larger bandwidth dimension ratio (BDR) value of 6596 that is accomplished by augmenting the electrical length of the patch. The electrical dimension of the proposed antenna is 0.18λ×0.16λ (λ corresponds to the lower end operating frequency). The designed antenna achieves a frequency range from 1.22 to 47.5 GHz with a fractional bandwidth of 190% and exhibiting S11 < −10 dB in simulation. For validating the simulated outcomes, the antenna model is fabricated and measured. Good conformity is established between measured and simulated results. Measured frequency ranges from 1.25 to 40 GHz with a fractional bandwidth of 188%, BDR of 6523 and S11 < −10 dB. Even though the presented antenna operates properly over the frequency range from 1.22 to 47.5 GHz, the results of the experiment are measured till 40 GHz because of the high-frequency constraint of the existing Vector Network Analyzer (VNA). The designed SWB antenna has the benefit of good gain, concise dimension, and wide bandwidth above the formerly reported antenna structures. Simulated gain varies from 0.5 to 10.3 dBi and measured gain varies from 0.2 to 9.7 dBi. Frequency domain, as well as time-domain characterization, has been realized to guide the relevance of the proposed antenna in SWB wireless applications. Furthermore, an equivalent circuit model of the proposed antenna is developed, and the response of the circuit is obtained. The presented antenna can be employed in L, S, C, X, Ka, K, Ku, and Q band wireless communication systems. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

16 pages, 6459 KiB  
Article
Sentinel-2A MSI and Landsat 8 OLI Provide Data Continuity for Geological Remote Sensing
by Harald Van der Werff and Freek Van der Meer
Remote Sens. 2016, 8(11), 883; https://doi.org/10.3390/rs8110883 - 25 Oct 2016
Cited by 155 | Viewed by 22134
Abstract
Sentinel-2A MSI is the Landsat-like spatial resolution (10–60 m) super-spectral instrument of the European Space Agency (ESA), aimed at additional data continuity for global land surface monitoring with Landsat and Satellite Pour l’Observation de la Terre (SPOT) missions. Several simulation studies have been [...] Read more.
Sentinel-2A MSI is the Landsat-like spatial resolution (10–60 m) super-spectral instrument of the European Space Agency (ESA), aimed at additional data continuity for global land surface monitoring with Landsat and Satellite Pour l’Observation de la Terre (SPOT) missions. Several simulation studies have been conducted in the last several years to show the potential of Sentinel-2A MSI (MultiSpectral Instrument). Now that real data are available, the first confirmations of this potential and comparisons with other operational systems are being made. This paper aims at evaluating Sentinel-2A MSI band ratio products that are relevant for geological remote sensing. A Sentinel-2A MSI and a Landsat 8 OLI (Operational Land Imager) scene were processed from their respective levels L1C and L1T to level L2A (bottom of atmosphere reflectance). Then, three band ratios originally defined for Landsat TM (Thematic Mapper) were used to map mineralogy associated with a hydrothermal alteration system in southeast Spain. The results obtained with Sentinel-2A MSI were compared with those obtained with Landsat 8 OLI and a simulated Sentinel-2A MSI dataset that was used before actual data were released. Results show that the images appear similar to the human eye having a correlation of approximately 0.8 and higher, but that the associated data ranges differ significantly. The resulting products are also compared to a published geologic map of the study area, and it is shown that the resulting maps correspond with the conceptual geologic model of the epithermal deposit. Full article
Show Figures

Graphical abstract

Back to TopTop