Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Straits of Florida

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 1878 KiB  
Proceeding Paper
Satellite-Derived Estimates of Suspended CaCO3 Mud Concentrations from the West Florida Shelf Induced by Hurricane Ian
by James G. Acker and R. Jude Wilber
Environ. Sci. Proc. 2024, 29(1), 69; https://doi.org/10.3390/ECRS2023-16656 - 22 Dec 2023
Viewed by 547
Abstract
In the days following the passage of Hurricane Ian over the West Florida Shelf, a large plume of calcium carbonate (CaCO3) mud slurry was observed extending from west of the Dry Tortugas and curving to the east into the Straits of [...] Read more.
In the days following the passage of Hurricane Ian over the West Florida Shelf, a large plume of calcium carbonate (CaCO3) mud slurry was observed extending from west of the Dry Tortugas and curving to the east into the Straits of Florida. This discreet target offered a unique opportunity to quantify the suspended mass of CaCO3 in the slurry. Estimating the concentration of sediment in a plume of suspended CaCO3 by satellite sensor observations has been stymied up to now owing to a lack of in situ suspended sediment measurements during storm events, as “sea truth” data for such events is difficult to acquire. However, the Particulate Inorganic Carbon (PIC) standard product provided by the NASA Ocean Biology Distributed Active Archive Center (OBDAAC) is based on Moderate Resolution Imaging Spectroradiometer (MODIS) observations of a plume of coccolith chalk released from a ship in the “Chalk-Ex” experiment. Due to the similarities (particle size, mineralogy, and reflectance properties) of the suspended chalk features and the Ian-induced slurry, we utilized this data product to make initial estimates of the concentration of suspended sediment in the plume. Full article
(This article belongs to the Proceedings of ECRS 2023)
Show Figures

Figure 1

28 pages, 7296 KiB  
Article
Marine Heat Waves over Natural and Urban Coastal Environments of South Florida
by Yannis S. Androulidakis and Vassiliki Kourafalou
Water 2022, 14(23), 3840; https://doi.org/10.3390/w14233840 - 25 Nov 2022
Cited by 6 | Viewed by 4034
Abstract
Marine Heat Wave (MHW) events are increasingly recognized as an important factor in the sustainability of coastal environments (both natural and urban), in the context of climate change. They are related to increasing trends of Sea Surface Temperature (SST) at the adjacent ocean [...] Read more.
Marine Heat Wave (MHW) events are increasingly recognized as an important factor in the sustainability of coastal environments (both natural and urban), in the context of climate change. They are related to increasing trends of Sea Surface Temperature (SST) at the adjacent ocean waters. SST is an important parameter of the earth’s climate and increasing SST trends have been associated with adverse effects on coastal ecosystems, with important environmental and socioeconomic implications. This study focuses on the SST interannual variability over the coastal marine environment of South Florida, which contains several fragile ecosystems, and draws associate effects with adjacent large urban coastal settlements. The methodology is based on high-resolution satellite-derived SST data during a 40-year period (1982–2021), augmented by recent high-resolution model simulations (2012–2020). A generally increasing trend has been detected in the observations over the entire region (0.19 °C/decade). The unusual temperature levels have been associated with the formation of extensive MHW events, which showed interannual positive trends (0.75 events/decade) during the 40-year study period. Specifically, the six most recent years (2015–2021) were characterized by the strongest formation of MHWs with a peak in 2015, 2019 and 2020, with more than 8 events/year and approximately 70 to 110 days/year duration in total. The Florida Keys, especially along the Straits of Florida (southern island coasts), revealed very strong increasing trends. Miami Beach is also characterized by strong interannual trends (1.1 events/decade and 10 days/decade) compared to the enclosed basin of Biscayne Bay. In addition to the influence of atmospheric conditions over all regions around South Florida, the formation of MHWs near the eastern Florida coasts was also controlled by ocean dynamics, related to the warm Florida Current (FC). The evolution of the FC close to the eastern coasts (e.g., Miami Beach) was found to be a pre-condition of MHW formation. Several disastrous events on the biotic environment of South Florida near large urban settlements have been related to the formation of MHWs. The detected positive trends, and especially the recent high peaks of MHW events, may enhance the loss of specific heat-sensitive species, damaging the biodiversity of this tropical coastal environment and weakening the natural coastal protection against tropical storms. Urban planning for sustainable development in South Florida’s coastal cities must take into account MHW trends. Full article
(This article belongs to the Special Issue Hydrodynamics in Coastal Areas)
Show Figures

Figure 1

23 pages, 8814 KiB  
Article
Analysis of Wave Energy Behavior and Its Underlying Reasons in the Gulf of Mexico Based on Computer Animation and Energy Events Concept
by Francisco Haces-Fernandez, Hua Li and David Ramirez
Sustainability 2022, 14(8), 4687; https://doi.org/10.3390/su14084687 - 14 Apr 2022
Cited by 2 | Viewed by 2062
Abstract
The complexity and variability of ocean waves make wave energy harvesting very challenging. Previous research has indicated that wave energy was mainly generated and transferred by wind, but the detailed correlation between wind and wave energy has not been discovered. Wave energy in [...] Read more.
The complexity and variability of ocean waves make wave energy harvesting very challenging. Previous research has indicated that wave energy was mainly generated and transferred by wind, but the detailed correlation between wind and wave energy has not been discovered. Wave energy in the Gulf of Mexico (GoM) has high variability with distinct seasonal behavior. However, the underlying reasons for this unique behavior have not been discussed and discovered yet. In this paper, a computer animation-based dynamic visualization method was created to conduct exploratory and explanatory analyses of 36 years of meteorological data in the GoM from the WaveWatch III system to identify preliminary patterns and underlying reasons for the unique behavior of wave energy in the GoM. These preliminary patterns and underlying reasons were further analyzed using Energy Events and Breaks concepts. During both high and low levels wave energy periods, the detailed correlation between wave energy and the wind was analyzed and determined. High level wave power in the GoM was mainly generated by the local inland wind from northern weather patterns, while low level wave power was mainly generated by swells from the Caribbean and the Atlantic oceans, which entered the GoM through the two narrow pathways, the Straits of Yucatan and the Florida Straits. The results from this paper will also be able to help the design, placement, and operation of future wave energy converters to improve their efficiency in harvesting wave energy in the GoM. Full article
(This article belongs to the Special Issue Feature Papers in Energy Sustainability)
Show Figures

Figure 1

28 pages, 16095 KiB  
Article
The Role of Mesoscale Dynamics over Northwestern Cuba in the Loop Current Evolution in 2010, during the Deepwater Horizon Incident
by Yannis Androulidakis, Vassiliki Kourafalou, Matthieu Le Hénaff, HeeSook Kang and Nektaria Ntaganou
J. Mar. Sci. Eng. 2021, 9(2), 188; https://doi.org/10.3390/jmse9020188 - 11 Feb 2021
Cited by 6 | Viewed by 3010
Abstract
The Loop Current (LC) system controls the connectivity between the northern Gulf of Mexico (GoM) region and the Straits of Florida. The evolution of the LC and the shedding sequence of the LC anticyclonic ring (Eddy Franklin) were crucial for the fate of [...] Read more.
The Loop Current (LC) system controls the connectivity between the northern Gulf of Mexico (GoM) region and the Straits of Florida. The evolution of the LC and the shedding sequence of the LC anticyclonic ring (Eddy Franklin) were crucial for the fate of the hydrocarbons released during the Deepwater Horizon (DwH) oil spill in 2010. In a previous study, we identified LC-related anticyclonic eddies in the southern GoM, named “Cuba anticyclones” (“CubANs”). Here, we investigate the relation between these eddies and LC evolution in 2010, focusing on the DwH period. We use high-resolution model results in tandem with observational data to describe the connection between the LC system evolution within the GoM (LC extensions, Eddy Franklin and LC Frontal Eddies—LCFEs) and the mesoscale dynamics within the Straits of Florida where CubANs propagate. Five periods of CubAN eddy activity were identified during the oil spill period, featuring different formation processes under a combination of local and regional conditions. Most of these cases are related to the retracted LC phases, when the major LC anticyclone (Eddy Franklin in 2010) is detached from the main body and CubAN eddy activity is most likely. However, two cases of CubAN eddy presence during elongated LC were detected, which led to the attenuation of the eastward flows of warm waters through the Straits (Florida Current; outflow), allowing the stronger supply of Caribbean waters through the Yucatan Channel into the Gulf (inflow), which contributed to short-term LC northward extensions. Oceanographic (LCFEs) and meteorological (wind-induced upwelling) conditions contributed to the release of CubANs from the main LC body, which, in tandem with other processes, contributed to the LC evolution during the DwH oil spill incident. Full article
(This article belongs to the Special Issue Monitoring and Modelling of Coastal Environment)
Show Figures

Figure 1

32 pages, 14153 KiB  
Article
Pathways of Oil Spills from Potential Cuban Offshore Exploration: Influence of Ocean Circulation
by Yannis Androulidakis, Vassiliki Kourafalou, Lars Robert Hole, Matthieu Le Hénaff and HeeSook Kang
J. Mar. Sci. Eng. 2020, 8(7), 535; https://doi.org/10.3390/jmse8070535 - 18 Jul 2020
Cited by 19 | Viewed by 4278
Abstract
The DeepWater Horizon oil spill in the Gulf of Mexico (GoM) in 2010 raised the public awareness on potential spills from offshore exploration activities. It became apparent that knowledge of potential oil pathways in the case of a spill is important for preparedness [...] Read more.
The DeepWater Horizon oil spill in the Gulf of Mexico (GoM) in 2010 raised the public awareness on potential spills from offshore exploration activities. It became apparent that knowledge of potential oil pathways in the case of a spill is important for preparedness and response. This study focuses on such scenarios from potential oil spills in the Cuban Exclusive Economic Zone (EEZ), a vast area in the GoM and the Straits of Florida that has not received much attention in oil spill studies, even though this region has been under evaluation for oil exploration. The Cuban EEZ is also in the crossroads of heavy tanker traffic, from the areas of intense oil exploration in the Northern GoM to the adjacent Caribbean Sea and Atlantic Ocean. The study also evaluates how the oil transport and fate are influenced by the main circulation patterns of the GoM, such as the Loop Current (LC) system and the mesoscale dynamics inside the Straits of Florida, such as the Florida Current (FC) and the accompanying cyclonic (along the northern Straits) and anticyclonic (along the Cuban coasts) eddies. We used oil spill numerical simulations, in tandem with high resolution data-assimilative ocean simulations, to test the fate of potential oil spills originating from different release sites within the Cuban EEZ during a six-year period (2011–2016) to exhibit certain aspects of interannual variability of ocean dynamics. The LC extended and retracted phases in the GoM interior revealed different impacts on the oil fate depending on the release site. The meandering of the FC, which is strongly related to the mesoscale eddies that evolve inside the Straits of Florida, controlled oil pathways either towards the northern Straits or along the Cuban coast. The most likely scenario for oil stranding at southern Florida is from oil released at the deep central Straits of Florida. Oil release near the Yucatan Strait and in the deep Gulf interior showed the highest risk of overall oil beaching at the Gulf beaches. The regional (e.g., LC) and local (e.g., eddies in the Straits) dynamics are proven to be significant indicators to predict the oil fate and stranding along the Gulf coasts, which should lead to improving planning and preparedness in the case of a spill in the Cuban EEZ. Full article
Show Figures

Figure 1

17 pages, 6316 KiB  
Article
Using Scuba for In Situ Determination of Chlorophyll Distributions in Corals by Underwater Near Infrared Fluorescence Imaging
by Thomas Oh, Jittiwat Sermsripong and Barry W. Hicks
J. Mar. Sci. Eng. 2020, 8(1), 53; https://doi.org/10.3390/jmse8010053 - 18 Jan 2020
Cited by 2 | Viewed by 5034
Abstract
Studies reporting quantitation and imaging of chlorophyll in corals using visible fluorescent emission in the red near 680 nm can suffer from competing emission from other red-emitting pigments. Here, we report a novel method of selectively imaging chlorophyll distributions in coral in situ [...] Read more.
Studies reporting quantitation and imaging of chlorophyll in corals using visible fluorescent emission in the red near 680 nm can suffer from competing emission from other red-emitting pigments. Here, we report a novel method of selectively imaging chlorophyll distributions in coral in situ using only the near infrared (NIR) fluorescence emission from chlorophyll. Commercially available equipment was assembled that allowed the sequential imaging of visible, visible-fluorescent, and NIR-fluorescent pigments on the same corals. The relative distributions of chlorophyll and fluorescent proteins (GFPs) were examined in numerous corals in the Caribbean Sea, the Egyptian Red Sea, the Indonesian Dampier Strait, and the Florida Keys. Below 2 m depth, solar induced NIR chlorophyll fluorescence can be imaged in daylight without external lighting, thus, it is much easier to do than visible fluorescence imaging done at night. The distributions of chlorophyll and GFPs are unique in every species examined, and while there are some tissues where both fluorophores are co-resident, often tissues are selectively enriched in only one of these fluorescent pigments. Although laboratory studies have clearly shown that GFPs can be photo-protective, their inability to prevent large scale bleaching events in situ may be due to their limited tissue distribution. Full article
(This article belongs to the Special Issue Underwater Imaging)
Show Figures

Graphical abstract

14 pages, 22622 KiB  
Letter
Mississippi River and Campeche Bank (Gulf of Mexico) Episodes of Cross-Shelf Export of Coastal Waters Observed with Satellites
by Daniel B. Otis, Matthieu Le Hénaff, Vassiliki H. Kourafalou, Lucas McEachron and Frank E. Muller-Karger
Remote Sens. 2019, 11(6), 723; https://doi.org/10.3390/rs11060723 - 26 Mar 2019
Cited by 18 | Viewed by 5639
Abstract
The cross-shelf advection of coastal waters into the deep Gulf of Mexico is important for the transport of nutrients or potential pollutants. Twenty years of ocean color satellite imagery document such cross-shelf transport events via three export pathways in the Gulf of Mexico: [...] Read more.
The cross-shelf advection of coastal waters into the deep Gulf of Mexico is important for the transport of nutrients or potential pollutants. Twenty years of ocean color satellite imagery document such cross-shelf transport events via three export pathways in the Gulf of Mexico: from the Campeche Bank toward the central Gulf, from the Campeche Bank toward the Florida Straits, and from the Mississippi Delta to the Florida Straits. A catalog of these events was created based on the visual examination of 7280 daily satellite images. Water transport from the Campeche Bank to the central Gulf occurred frequently and with no seasonal pattern. Transport from Campeche Bank to the Florida Straits occurred episodically, when the Loop Current was retracted. Four such episodes were identified, between about December and June, in 2002, 2009, 2016, and 2017, each lasting ~3 months. Movement of Mississippi River water to the Florida Straits was more frequent and showed near seasonal occurrence, when the Loop Current was extended, while the Mississippi River discharge seems to play only a secondary role. Eight such episodes were identified—in 1999, 2000, 2003, 2004, 2006, 2011, 2014, and 2015—each lasting ~3 months during summer. The 2015 episode lasted 5 months. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

Back to TopTop