Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Spalax

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2160 KiB  
Article
Splice Variant of Spalax Heparanase Skipping Exon 12
by Nicola J. Nasser, Eviatar Nevo and Aaron Avivi
Genes 2024, 15(8), 1039; https://doi.org/10.3390/genes15081039 - 7 Aug 2024
Viewed by 1114
Abstract
The subterranean blind mole rat, Spalax, has evolved significantly over 47 million years to thrive in its underground habitat. A key enzyme in this adaptation is heparanase, which degrades heparan sulfate (HS) in the extracellular matrix (ECM), facilitating angiogenesis and releasing growth [...] Read more.
The subterranean blind mole rat, Spalax, has evolved significantly over 47 million years to thrive in its underground habitat. A key enzyme in this adaptation is heparanase, which degrades heparan sulfate (HS) in the extracellular matrix (ECM), facilitating angiogenesis and releasing growth factors for endothelial cells. Spalax heparanase has various splice variants influencing tumor growth and metastasis differently. We report a novel splice variant from a hypoxia-exposed kidney sample resulting from exon 12 skipping. This variant maintains the translation frame but lacks enzymatic activity, offering insights into Spalax’s unique adaptations. Full article
(This article belongs to the Special Issue Application of Animal Modeling in Cancer)
Show Figures

Figure 1

12 pages, 2221 KiB  
Article
Damage-Free Shortening of Telomeres Is a Potential Strategy Supporting Blind Mole-Rat Longevity
by Huda Adwan Shekhidem, Lital Sharvit, Derek M. Huffman, Irena Manov, Gil Atzmon and Imad Shams
Genes 2023, 14(4), 845; https://doi.org/10.3390/genes14040845 - 31 Mar 2023
Cited by 3 | Viewed by 2861
Abstract
Telomere shortening or loss of shelterin components activates DNA damage response (DDR) pathways, leading to a replicative senescence that is usually coupled with a senescence-associated secretory phenotype (SASP). Recent studies suggested that telomere aberration that activates DDR may occur, irrespective of telomere length [...] Read more.
Telomere shortening or loss of shelterin components activates DNA damage response (DDR) pathways, leading to a replicative senescence that is usually coupled with a senescence-associated secretory phenotype (SASP). Recent studies suggested that telomere aberration that activates DDR may occur, irrespective of telomere length or loss of shelterin complex. The blind mole-rat (Spalax) is a subterranean rodent with exceptional longevity, and its cells demonstrate an uncoupling of senescence and SASP inflammatory components. Herein, we evaluated Spalax relative telomere length, telomerase activity, and shelterin expression, along with telomere-associated DNA damage foci (TAFs) levels with cell passage. We show that telomeres shorten in Spalax fibroblasts similar to the process in rats, and that the telomerase activity is lower. Moreover, we found lower DNA damage foci at the telomeres and a decline in the mRNA expression of two shelterin proteins, known as ATM/ATR repressors. Although additional studies are required for understanding the underling mechanism, our present results imply that Spalax genome protection strategies include effective telomere maintenance, preventing early cellular senescence induced by persistent DDR, thereby contributing to its longevity and healthy aging. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 5485 KiB  
Article
Senescent Secretome of Blind Mole Rat Spalax Inhibits Malignant Behavior of Human Breast Cancer Cells Triggering Bystander Senescence and Targeting Inflammatory Response
by Amani Odeh, Hossam Eddini, Lujain Shawasha, Anastasia Chaban, Aaron Avivi, Imad Shams and Irena Manov
Int. J. Mol. Sci. 2023, 24(6), 5132; https://doi.org/10.3390/ijms24065132 - 7 Mar 2023
Cited by 4 | Viewed by 3754
Abstract
Subterranean blind mole rat, Spalax, has developed strategies to withstand cancer by maintaining genome stability and suppressing the inflammatory response. Spalax cells undergo senescence without the acquisition of senescence-associated secretory phenotype (SASP) in its canonical form, namely, it lacks the main inflammatory [...] Read more.
Subterranean blind mole rat, Spalax, has developed strategies to withstand cancer by maintaining genome stability and suppressing the inflammatory response. Spalax cells undergo senescence without the acquisition of senescence-associated secretory phenotype (SASP) in its canonical form, namely, it lacks the main inflammatory mediators. Since senescence can propagate through paracrine factors, we hypothesize that conditioned medium (CM) from senescent Spalax fibroblasts can transmit the senescent phenotype to cancer cells without inducing an inflammatory response, thereby suppressing malignant behavior. To address this issue, we investigated the effect of CMs of Spalax senescent fibroblasts on the proliferation, migration, and secretory profile in MDA-MB-231 and MCF-7 human breast cancer cells. The results suggest that Spalax CM induced senescence in cancer cells, as evidenced by increased senescence-associated beta-galactosidase (SA-β-Gal) activity, growth suppression and overexpression of senescence-related p53/p21 genes. Contemporaneously, Spalax CM suppressed the secretion of the main inflammatory factors in cancer cells and decreased their migration. In contrast, human CM, while causing a slight increase in SA-β-Gal activity in MDA-MB-231 cells, did not decrease proliferation, inflammatory response, and cancer cell migration. Dysregulation of IL-1α under the influence of Spalax CM, especially the decrease in the level of membrane-bound IL1-α, plays an important role in suppressing inflammatory secretion in cancer cells, which in turn leads to inhibition of cancer cell migration. Overcoming of SASP in tumor cells in response to paracrine factors of senescent microenvironment or anti-cancer drugs represents a promising senotherapeutic strategy in cancer treatment. Full article
Show Figures

Figure 1

17 pages, 1886 KiB  
Article
Glutamine Homeostasis and Its Role in the Adaptive Strategies of the Blind Mole Rat, Spalax
by Dmitry Miskevich, Anastasia Chaban, Maria Dronina, Ifat Abramovich, Eyal Gottlieb and Imad Shams
Metabolites 2021, 11(11), 755; https://doi.org/10.3390/metabo11110755 - 31 Oct 2021
Cited by 7 | Viewed by 3545
Abstract
Oxidative metabolism is fine-tuned machinery that combines two tightly coupled fluxes of glucose and glutamine-derived carbons. Hypoxia interrupts the coordination between the metabolism of these two nutrients and leads to a decrease of the system efficacy and may eventually cause cell death. The [...] Read more.
Oxidative metabolism is fine-tuned machinery that combines two tightly coupled fluxes of glucose and glutamine-derived carbons. Hypoxia interrupts the coordination between the metabolism of these two nutrients and leads to a decrease of the system efficacy and may eventually cause cell death. The subterranean blind mole rat, Spalax, is an underexplored, underground, hypoxia-tolerant mammalian group which spends its life under sharply fluctuating oxygen levels. Primary Spalax cells are an exceptional model to study the metabolic strategies that have evolved in mammals inhabiting low-oxygen niches. In this study we explored the metabolic frame of glutamine (Gln) homeostasis in Spalax skin cells under normoxic and hypoxic conditions and their impacts on the metabolism of rat cells. Targeted metabolomics employing liquid chromatography and mass spectrometry (LC-MS) was used to track the fate of heavy glutamine carbons (13C5 Gln) after 24 h under normoxia or hypoxia (1% O2). Our results indicated that large amounts of glutamine-originated carbons were detected as proline (Pro) and hydroxyproline (HPro) in normoxic Spalax cells with a further increase under hypoxia, suggesting a strategy for reduced Gln carbons storage in proteins. The intensity of the flux and the presence of HPro suggests collagen as a candidate protein that is most abundant in animals, and as the primary source of HPro. An increased conversion of αKG to 2 HG that was indicated in hypoxic Spalax cells prevents the degradation of hypoxia-inducible factor 1α (HIF-1α) and, consequently, maintains cytosolic and mitochondrial carbons fluxes that were uncoupled via inhibition of the pyruvate dehydrogenase complex. A strong antioxidant defense in Spalax cells can be attributed, at least in part, to the massive usage of glutamine-derived glutamate for glutathione (GSH) production. The present study uncovers additional strategies that have evolved in this unique mammal to support its hypoxia tolerance, and probably contribute to its cancer resistance, longevity, and healthy aging. Full article
(This article belongs to the Special Issue Metabolic Strategies in Hypoxia)
Show Figures

Figure 1

18 pages, 2099 KiB  
Article
Comprehensive Analysis of 13C6 Glucose Fate in the Hypoxia-Tolerant Blind Mole Rat Skin Fibroblasts
by Dmitry Miskevich, Anastasia Chaban, Maria Dronina, Ifat Abramovich, Eyal Gottlieb and Imad Shams
Metabolites 2021, 11(11), 734; https://doi.org/10.3390/metabo11110734 - 27 Oct 2021
Cited by 6 | Viewed by 4816
Abstract
The bioenergetics of the vast majority of terrestrial mammals evolved to consuming glucose (Glc) for energy production under regular atmosphere (about 21% oxygen). However, some vertebrate species, such as aquatic turtles, seals, naked mole rat, and blind mole rat, Spalax, have adjusted [...] Read more.
The bioenergetics of the vast majority of terrestrial mammals evolved to consuming glucose (Glc) for energy production under regular atmosphere (about 21% oxygen). However, some vertebrate species, such as aquatic turtles, seals, naked mole rat, and blind mole rat, Spalax, have adjusted their homeostasis to continuous function under severe hypoxic environment. The exploration of hypoxia-tolerant species metabolic strategies provides a better understanding of the adaptation to hypoxia. In this study, we compared Glc homeostasis in primary Spalax and rat skin cells under normoxic and hypoxic conditions. We used the targeted-metabolomics approach, utilizing liquid chromatography and mass spectrometry (LC-MS) to track the fate of heavy Glc carbons (13C6 Glc), as well as other methodologies to assist the interpretation of the metabolic landscape, such as bioenergetics profiling, Western blotting, and gene expression analysis. The metabolic profile was recorded under steady-state (after 24 h) of the experiment. Glc-originated carbons were unequally distributed between the cytosolic and mitochondrial domains in Spalax cells compared to the rat. The cytosolic domain is dominant apparently due to the hypoxia-inducible factor-1 alpha (HIF-1α) mastering, since its level is higher under normoxia and hypoxia in Spalax cells. Consumed Glc in Spalax cells is utilized for the pentose phosphate pathway maintaining the NADPH pool, and is finally harbored as glutathione (GSH) and UDP-GlcNAc. The cytosolic domain in Spalax cells works in the semi-uncoupled mode that limits the consumed Glc-derived carbons flux to the tricarboxylic acid (TCA) cycle and reduces pyruvate delivery; however, it maintains the NAD+ pool via lactate dehydrogenase upregulation. Both normoxic and hypoxic mitochondrial homeostasis of Glc-originated carbons in Spalax are characterized by their massive cataplerotic flux along with the axis αKG→Glu→Pro→hydroxyproline (HPro). The product of collagen degradation, HPro, as well as free Pro are apparently involved in the bioenergetics of Spalax under both normoxia and hypoxia. The upregulation of 2-hydroxyglutarate production detected in Spalax cells may be involved in modulating the levels of HIF-1α. Collectively, these data suggest that Spalax cells utilize similar metabolic frame for both normoxia and hypoxia, where glucose metabolism is switched from oxidative pathways (conversion of pyruvate to Acetyl-CoA and further TCA cycle processes) to (i) pentose phosphate pathway, (ii) lactate production, and (iii) cataplerotic pathways leading to hexosamine, GSH, and HPro production. Full article
(This article belongs to the Special Issue Metabolic Strategies in Hypoxia)
Show Figures

Figure 1

12 pages, 1649 KiB  
Article
Telomeres and Longevity: A Cause or an Effect?
by Huda Adwan Shekhidem, Lital Sharvit, Eva Leman, Irena Manov, Asael Roichman, Susanne Holtze, Derek M. Huffman, Haim Y. Cohen, Thomas Bernd Hildebrandt, Imad Shams and Gil Atzmon
Int. J. Mol. Sci. 2019, 20(13), 3233; https://doi.org/10.3390/ijms20133233 - 1 Jul 2019
Cited by 35 | Viewed by 9658
Abstract
Telomere dynamics have been found to be better predictors of survival and mortality than chronological age. Telomeres, the caps that protect the end of linear chromosomes, are known to shorten with age, inducing cell senescence and aging. Furthermore, differences in age-related telomere attrition [...] Read more.
Telomere dynamics have been found to be better predictors of survival and mortality than chronological age. Telomeres, the caps that protect the end of linear chromosomes, are known to shorten with age, inducing cell senescence and aging. Furthermore, differences in age-related telomere attrition were established between short-lived and long-lived organisms. However, whether telomere length is a “biological thermometer” that reflects the biological state at a certain point in life or a biomarker that can influence biological conditions, delay senescence and promote longevity is still an ongoing debate. We cross-sectionally tested telomere length in different tissues of two long-lived (naked mole-rat and Spalax) and two short-lived (rat and mice) species to tease out this enigma. While blood telomere length of the naked mole-rat (NMR) did not shorten with age but rather showed a mild elongation, telomere length in three tissues tested in the Spalax declined with age, just like in short-lived rodents. These findings in the NMR, suggest an age buffering mechanism, while in Spalax tissues the shortening of the telomeres are in spite of its extreme longevity traits. Therefore, using long-lived species as models for understanding the role of telomeres in longevity is of great importance since they may encompass mechanisms that postpone aging. Full article
(This article belongs to the Special Issue Role of Telomeres and Telomerase in Cancer and Aging 2019)
Show Figures

Figure 1

19 pages, 937 KiB  
Review
Evolution Shapes the Gene Expression Response to Oxidative Stress
by Rima Siauciunaite, Nicholas S. Foulkes, Viola Calabrò and Daniela Vallone
Int. J. Mol. Sci. 2019, 20(12), 3040; https://doi.org/10.3390/ijms20123040 - 21 Jun 2019
Cited by 52 | Viewed by 7790
Abstract
Reactive oxygen species (ROS) play a key role in cell physiology and function. ROS represents a potential source of damage for many macromolecules including DNA. It is thought that daily changes in oxidative stress levels were an important early factor driving evolution of [...] Read more.
Reactive oxygen species (ROS) play a key role in cell physiology and function. ROS represents a potential source of damage for many macromolecules including DNA. It is thought that daily changes in oxidative stress levels were an important early factor driving evolution of the circadian clock which enables organisms to predict changes in ROS levels before they actually occur and thereby optimally coordinate survival strategies. It is clear that ROS, at relatively low levels, can serve as an important signaling molecule and also serves as a key regulator of gene expression. Therefore, the mechanisms that have evolved to survive or harness these effects of ROS are ancient evolutionary adaptations that are tightly interconnected with most aspects of cellular physiology. Our understanding of these mechanisms has been mainly based on studies using a relatively small group of genetic models. However, we know comparatively little about how these mechanisms are conserved or have adapted during evolution under different environmental conditions. In this review, we describe recent work that has revealed significant species-specific differences in the gene expression response to ROS by exploring diverse organisms. This evidence supports the notion that during evolution, rather than being highly conserved, there is inherent plasticity in the molecular mechanisms responding to oxidative stress. Full article
Show Figures

Figure 1

Back to TopTop