Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Sn-58Bi solder paste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11621 KiB  
Article
Research Progress of Zero-Busbar Technology Based on Heterojunction Photovoltaic Modules
by Shu Zhang, Xue Chen, Haiyuan Chu, Xian Guo, Yan Xie, Xiyan Fan, Runtao Li, Jian Zhu, Jiabin Tan, Jiyuan Yang, Yifeng Chen and Jifan Gao
Appl. Sci. 2024, 14(23), 10845; https://doi.org/10.3390/app142310845 - 23 Nov 2024
Cited by 1 | Viewed by 1363
Abstract
In order to reduce manufacturing costs, the design of silicon-based solar modules is changing from a super-multi-busbar design to a zero-busbar (0BB) design. In this study, two different 0BB technologies based on heterojunction with intrinsic thin-layer solar cells—conventional soldering, and Integrated Film Covering [...] Read more.
In order to reduce manufacturing costs, the design of silicon-based solar modules is changing from a super-multi-busbar design to a zero-busbar (0BB) design. In this study, two different 0BB technologies based on heterojunction with intrinsic thin-layer solar cells—conventional soldering, and Integrated Film Covering (IFC)—were investigated. IFC-based 0BB technology was found to have a lower contact resistance, which well matches the theoretical calculations and module power testing results. To further measure module reliability, a series of tests on solders and silver pastes were carried out. The results show that Sn43Pb43Bi14 solder is more suitable for soldering-based 0BB technology, whereas Sn32Pb42Bi26 solder is more suitable for IFC-based technology. Additionally, silver paste, which is used for solder ribbon contact areas (SRCAs), is suitable for soldering-based 0BB technology. When Ag@Cu paste is used in SRCAs with IFC-based 0BB technology, a reliable connection can also be achieved. After optimization, modules using both techniques were subjected to and passed lifetime tests, including the thermal cycling, humidity freeze, and hot-spot tests required in IEC standards, as well as more rigorous tests such as thermal–dynamic and thermal–static mechanical loading. The results show that the two technologies have great potential for future mass production. Full article
(This article belongs to the Special Issue Solar Cells: Recent Advances, Perspectives and Applications)
Show Figures

Figure 1

16 pages, 10592 KiB  
Article
Cu Pillar Electroplating Using a Synthetic Polyquaterntum Leveler and Its Coupling Effect on SAC305/Cu Solder Joint Voiding
by Wenjie Li, Zhe Li, Fang-Yuan Zeng, Qi Zhang, Liwei Guo, Dan Li, Yong-Hui Ma and Zhi-Quan Liu
Materials 2024, 17(22), 5405; https://doi.org/10.3390/ma17225405 - 5 Nov 2024
Cited by 1 | Viewed by 1163
Abstract
With the advancement of high-integration and high-density interconnection in chip manufacturing and packaging, Cu bumping technology in wafer- and panel- level packaging is developed to micrometer-sized structures and pitches to accommodate increased I/O numbers on high-end integrated circuits. Driven by this industrial demand, [...] Read more.
With the advancement of high-integration and high-density interconnection in chip manufacturing and packaging, Cu bumping technology in wafer- and panel- level packaging is developed to micrometer-sized structures and pitches to accommodate increased I/O numbers on high-end integrated circuits. Driven by this industrial demand, significant efforts have been dedicated to Cu electroplating techniques for improved pillar shape control and solder joint reliability, which substantially depend on additive formulations and electroplating parameters that regulate the growth morphology, crystal structure, and impurity incorporation in the process of electrodeposition. It is necessary to investigate the effect of an additive on Cu pillar electrodeposition, and to explore the Kirkendall voids formed during the reflowing process, which may result from the additive-induced impurity in the electrodeposited Cu pillars. In this work, a self-synthesized polyquaterntum (PQ) was made out with dual suppressor and leveler effects, and was combined with prototypical accelerator bis- (sodium sulfopropyl)-disulfide (SPS) for patterned Cu pillar electroplating. Then, Sn96.5/Ag3.0/Cu0.5 (SAC305) solder paste were screen printed on electroplated Cu pillars and undergo reflow soldering. Kirkendall voids formed at the joint interfaces were observed and quantified by SEM. Finally, XRD, and EBSD were employed to characterize the microstructure under varying conditions. The results indicate that PQ exhibits significant suppressive and levelled properties with the new structure of both leveler and suppressor. However, its effectiveness is dependent on liquid convection. PQ and SPS work synergistically, influencing the polarization effect in various convective environments. Consequently, uneven adsorption occurs on the surface of the Cu pillars, which results in more Kirkendall voids at the corners than at the center along the Cu pillar surface. Full article
Show Figures

Figure 1

10 pages, 3851 KiB  
Article
Microstructural Optimization of Sn-58Bi Low-Temperature Solder Fabricated by Intense Pulsed Light (IPL) Irradiation
by Hyeri Go, Taejoon Noh, Seung-Boo Jung and Yoonchul Sohn
Crystals 2024, 14(5), 465; https://doi.org/10.3390/cryst14050465 - 16 May 2024
Cited by 5 | Viewed by 1819
Abstract
In this study, intense pulsed light (IPL) soldering was employed on Sn-58Bi solder pastes with two distinct particle sizes (T3: 25–45 μm and T9: 1–8 μm) to investigate the correlation between the solder microstructure and mechanical properties as a function of IPL irradiation [...] Read more.
In this study, intense pulsed light (IPL) soldering was employed on Sn-58Bi solder pastes with two distinct particle sizes (T3: 25–45 μm and T9: 1–8 μm) to investigate the correlation between the solder microstructure and mechanical properties as a function of IPL irradiation times. During IPL soldering, a gradual transition from an immature to a refined to a coarsened microstructure was observed in the solder, impacting its mechanical strength (hardness), which initially exhibited a slight increase followed by a subsequent decrease. It is noted that hardness measurements taken during the immature stage may exhibit slight deviations from the Hall–Petch relationship. Experimental findings revealed that as the number of IPL irradiation sessions increased, solder particles progressively coalesced, forming a unified mass after 30 sessions. Subsequently, after 30–40 IPL sessions, notable voids were observed within the T3 solder, while fewer voids were detected at the T9-ENIG interface. Following IPL soldering, a thin layered structure of Ni3Sn4 intermetallic compound (IMC) was observed at the Sn-58Bi/ENIG interface. In contrast, reflow soldering resulted in the abundant formation of rod-shaped Ni3Sn4 IMCs not only at the reaction interface but also within the solder bulk, accompanied by the notable presence of a P-rich layer beneath the IMC. Full article
Show Figures

Figure 1

12 pages, 9203 KiB  
Article
Board Level Drop Test for Evaluating the Reliability of High-Strength Sn–Bi Composite Solder Pastes with Thermosetting Epoxy
by Lu Liu, Songbai Xue, Ruiyang Ni and Peng Zhang
Crystals 2022, 12(7), 924; https://doi.org/10.3390/cryst12070924 - 29 Jun 2022
Cited by 4 | Viewed by 4661
Abstract
The Sn–Bi solder paste is commonly used in electronic assembly and packaging, but its brittleness causes poor reliability in shock environments. In this study, the mechanical reliability of Sn–Bi solder paste and Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was investigated [...] Read more.
The Sn–Bi solder paste is commonly used in electronic assembly and packaging, but its brittleness causes poor reliability in shock environments. In this study, the mechanical reliability of Sn–Bi solder paste and Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was investigated with the board level drop test. The crack characterizations of solder joints were evaluated using a stereomicroscope after the dye and pull test. The microstructure characterization and failure types of solder joints were analyzed by a scanning electron microscope (SEM), and an energy dispersive spectrometer (EDS) was employed to investigate the initial phase identification and elemental analysis. Compared with Sn–Bi solder paste, the results show that the TSEP Sn–Bi solder pastes reduced the proportion of the complete failure and partial failure of the solder joints during the drop test. The microstructure observation of the crack path showed that the Sn–Bi/TSEP Sn–Bi solder joints were reinforced through the cured epoxy resin. The number of drops of the Sn–Bi/TSEP Sn–Bi-x (x = 3, 5, 7) solder joints had 1.55, 2.57, and over 3.00 times that of Sn–Bi/Sn–Bi solder joints after the board level drop test. Full article
(This article belongs to the Special Issue Advances of Welding Materials)
Show Figures

Figure 1

13 pages, 13345 KiB  
Article
A New Low-Temperature Solder Assembly Technique to Replace Eutectic Sn-Bi Solder Assembly
by Lingyao Sun, Zhenhua Guo, Xiuchen Zhao, Ying Liu, Kingning Tu and Yingxia Liu
Micromachines 2022, 13(6), 867; https://doi.org/10.3390/mi13060867 - 31 May 2022
Cited by 9 | Viewed by 3458
Abstract
We successfully achieved low-temperature assembly by reflowing the 13.5Sn-37.5Bi-45In-4Pb quaternary eutectic solder paste and the SAC 305 solder ball together at 140 °C for 5 min. The wetting angle of the mixed solder joint is 17.55°. The overall atomic percent of Pb in [...] Read more.
We successfully achieved low-temperature assembly by reflowing the 13.5Sn-37.5Bi-45In-4Pb quaternary eutectic solder paste and the SAC 305 solder ball together at 140 °C for 5 min. The wetting angle of the mixed solder joint is 17.55°. The overall atomic percent of Pb in the mixed solder joint is less than 1%, which can be further reduced or eliminated. Moreover, after aging at 80 °C for 25 days, we observed no obvious decrease in shear strength of the fully mixed solder joint, which is the most advantage of this assembly technique over Sn58Bi solder assembly. The Bi phase segregation at the interface is slowed down compared with Sn-Bi solder joint. This low-temperature assembly is promising to be applied in advanced packaging technology to replace the eutectic Sn-Bi solder. Full article
(This article belongs to the Special Issue Advanced Interconnect and Packaging)
Show Figures

Figure 1

22 pages, 12291 KiB  
Article
Understanding the Effect of Reflow Profile on the Metallurgical Properties of Tin–Bismuth Solders
by Karel Dušek, David Bušek, Petr Veselý, Anna Pražanová, Martin Plaček and Julia Del Re
Metals 2022, 12(1), 121; https://doi.org/10.3390/met12010121 - 8 Jan 2022
Cited by 16 | Viewed by 4698
Abstract
Sn–Bi alloys are desirable candidates for soldering components on printed circuit boards (PCBs) because of their low melting point and reduced cost. While certain tin–bismuth solders are well characterized many new alloys in this family have been developed which need proper characterization. The [...] Read more.
Sn–Bi alloys are desirable candidates for soldering components on printed circuit boards (PCBs) because of their low melting point and reduced cost. While certain tin–bismuth solders are well characterized many new alloys in this family have been developed which need proper characterization. The following study looks at the behavior of four different Sn–Bi alloys—traditional 42Sn58Bi and 42Sn57Bi1Ag and two new tin–bismuth alloys—in solder paste during the reflow soldering process. Each alloy was processed using different reflow profiles that had varying times above liquidus (TALs) and peak temperatures. The PCBs were then analyzed to see how the processing variables influenced wetting, voiding, microstructure, intermetallic layer composition, and thickness. After analysis, the PCBs were then subjected to thermal cycling experiments to see how reflow profile impacted microstructure evolution. The results demonstrated that reflow profile affects properties such as metal wetting and voiding. It does not however, greatly impact key metallurgical properties such as intermetallic layer thickness. Full article
Show Figures

Figure 1

10 pages, 3675 KiB  
Article
Study on the Reliability of Sn–Bi Composite Solder Pastes with Thermosetting Epoxy under Thermal Cycling and Humidity Treatment
by Lu Liu, Songbai Xue, Ruiyang Ni, Peng Zhang and Jie Wu
Crystals 2021, 11(7), 733; https://doi.org/10.3390/cryst11070733 - 24 Jun 2021
Cited by 12 | Viewed by 4919
Abstract
In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by [...] Read more.
In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by differential scanning calorimeter (DSC). A reflow profile was optimized based on the Sn–Bi reflow profile, and the Organic Solderability Preservative (OSP) Cu pad mounted 0603 chip resistor was chosen to reflow soldering and to prepare samples of the corresponding joint. The high temperature and humidity reliability of the solder joints at 85 °C/85% RH (Relative Humidity) for 1000 h and the thermal cycle reliability of the solder joints from −40 °C to 125 °C for 1000 cycles were investigated. Compared to the Sn–Bi solder joint, the TSEP Sn–Bi solder joints had increased reliability. The microstructure observation shows that the epoxy resin curing process did not affect the transformation of the microstructure. The shear force of the TSEP Sn–Bi solder joints after 1000 cycles of thermal cycling test was 1.23–1.35 times higher than the Sn–Bi solder joint and after 1000 h of temperature and humidity tests was 1.14–1.27 times higher than the Sn–Bi solder joint. The fracture analysis indicated that the cured cover layer could still have a mechanical reinforcement to the TSEP Sn–Bi solder joints after these reliability tests. Full article
(This article belongs to the Special Issue Advances of Welding Materials)
Show Figures

Figure 1

16 pages, 14782 KiB  
Article
Interfacial Reactions and Mechanical Properties of Sn–58Bi Solder Joints with Ag Nanoparticles Prepared Using Ultra-Fast Laser Bonding
by Gyuwon Jeong, Dong-Yurl Yu, Seongju Baek, Junghwan Bang, Tae-Ik Lee, Seung-Boo Jung, JungSoo Kim and Yong-Ho Ko
Materials 2021, 14(2), 335; https://doi.org/10.3390/ma14020335 - 11 Jan 2021
Cited by 12 | Viewed by 3369
Abstract
The effects of Ag nanoparticle (Ag NP) addition on interfacial reaction and mechanical properties of Sn–58Bi solder joints using ultra-fast laser soldering were investigated. Laser-assisted low-temperature bonding was used to solder Sn–58Bi based pastes, with different Ag NP contents, onto organic surface preservative-finished [...] Read more.
The effects of Ag nanoparticle (Ag NP) addition on interfacial reaction and mechanical properties of Sn–58Bi solder joints using ultra-fast laser soldering were investigated. Laser-assisted low-temperature bonding was used to solder Sn–58Bi based pastes, with different Ag NP contents, onto organic surface preservative-finished Cu pads of printed circuit boards. The solder joints after laser bonding were examined to determine the effects of Ag NPs on interfacial reactions and intermetallic compounds (IMCs) and high-temperature storage tests performed to investigate its effects on the long-term reliabilities of solder joints. Their mechanical properties were also assessed using shear tests. Although the bonding time of the laser process was shorter than that of a conventional reflow process, Cu–Sn IMCs, such as Cu6Sn5 and Cu3Sn, were well formed at the interface of the solder joint. The addition of Ag NPs also improved the mechanical properties of the solder joints by reducing brittle fracture and suppressing IMC growth. However, excessive addition of Ag NPs degraded the mechanical properties due to coarsened Ag3Sn IMCs. Thus, this research predicts that the laser bonding process can be applied to low-temperature bonding to reduce thermal damage and improve the mechanical properties of Sn–58Bi solders, whose microstructure and related mechanical properties can be improved by adding optimal amounts of Ag NPs. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

12 pages, 4896 KiB  
Article
The Effect of Epoxy Polymer Addition in Sn-Ag-Cu and Sn-Bi Solder Joints
by Min-Soo Kang, Do-Seok Kim and Young-Eui Shin
Materials 2019, 12(6), 960; https://doi.org/10.3390/ma12060960 - 22 Mar 2019
Cited by 8 | Viewed by 5365
Abstract
To analyze the reinforcement effect of adding polymer to solder paste, epoxies were mixed with two currently available Sn-3.0Ag-0.5Cu (wt.% SAC305) and Sn-59Bi (wt.%) solder pastes and specimens prepared by bonding chip resistors to a printed circuit board. The effect of repetitive thermal [...] Read more.
To analyze the reinforcement effect of adding polymer to solder paste, epoxies were mixed with two currently available Sn-3.0Ag-0.5Cu (wt.% SAC305) and Sn-59Bi (wt.%) solder pastes and specimens prepared by bonding chip resistors to a printed circuit board. The effect of repetitive thermal stress on the solder joints was then analyzed experimentally using thermal shock testing (−40 °C to 125 °C) over 2000 cycles. The viscoplastic stress–strain curves generated in the solder were simulated using finite element analysis, and the hysteresis loop was calculated. The growth and propagation of cracks in the solder were also predicted using strain energy formulas. It was confirmed that the epoxy paste dispersed the stress inside the solder joint by externally supporting the solder fillet, and crack formation was suppressed, improving the lifetime of the solder joint. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

10 pages, 34322 KiB  
Article
Mechanical Property of Sn-58Bi Solder Paste Strengthened by Resin
by Lu Liu, Songbai Xue and Siyi Liu
Appl. Sci. 2018, 8(11), 2024; https://doi.org/10.3390/app8112024 - 23 Oct 2018
Cited by 17 | Viewed by 6779
Abstract
Sn-58Bi solder has been widely used for microelectronics packaging due to its low melting point temperature, good wetting performance, good mechanical properties, and low cost. Compared with Sn-Bi solder alloy and Sn-Pb solder alloy, the strength and plasticity of Sn-Bi solder are not [...] Read more.
Sn-58Bi solder has been widely used for microelectronics packaging due to its low melting point temperature, good wetting performance, good mechanical properties, and low cost. Compared with Sn-Bi solder alloy and Sn-Pb solder alloy, the strength and plasticity of Sn-Bi solder are not enough, due to the higher brittleness of bismuth, which thus limits the application of Sn-Bi solder. In order to improve the properties of Sn-Bi solder, a novel solder paste strengthened with resin was developed by mixing epoxy resin (ER) with Sn-58Bi solder, which enhanced the joint strength at a low cost. Aimed at the electronic industry, in this study, the spreadability of the novel solder paste was investigated, and the mechanical properties and microstructure of solder joints after reflow soldering were tested and analyzed. The results showed that when the content of epoxy resin was in the optimum range, the shear strength was significantly higher, reaching nearly twice that of Sn-58Bi solder alone. Full article
(This article belongs to the Special Issue Selected Papers from the NMJ2018)
Show Figures

Figure 1

Back to TopTop