Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Selenomonadales

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2740 KiB  
Article
Probiotic Mixtures Consisting of Representatives of Bacteroidetes and Selenomonadales Increase Resistance of Newly Hatched Chicks to Salmonella Enteritidis Infection
by Jiri Volf, Marcela Faldynova, Jitka Matiasovicova, Alena Sebkova, Daniela Karasova, Hana Prikrylova, Hana Havlickova and Ivan Rychlik
Microorganisms 2024, 12(11), 2145; https://doi.org/10.3390/microorganisms12112145 - 25 Oct 2024
Cited by 3 | Viewed by 1108
Abstract
There are extensive differences in the caecal microbiota of chicks from hatcheries and those inoculated with faecal material from adult hens. Besides differences in microbial composition, the latter chickens are highly resistant to Salmonella Enteritidis challenges, while the former are susceptible. In this [...] Read more.
There are extensive differences in the caecal microbiota of chicks from hatcheries and those inoculated with faecal material from adult hens. Besides differences in microbial composition, the latter chickens are highly resistant to Salmonella Enteritidis challenges, while the former are susceptible. In this study, we tested whether strains from genera Bacteroides, Megamonas, or Megasphaera can increase chicken resistance to Salmonella and Campylobacter jejuni when defined microbial mixtures consisting of these bacterial genera are administered. Mixtures consisting of different species and strains from the above-mentioned genera efficiently colonised the chicken caecum and increased chicken resistance to Salmonella by a factor of 50. The tested mixtures were even more effective in protecting chickens from Salmonella in a seeder model of infection (3–5 log reduction). The tested mixtures partially protected chickens from C. jejuni infection, though the effect was lower than that against Salmonella. The obtained data represent a first step for the development of a new type of probiotics for poultry. Full article
(This article belongs to the Special Issue Novel Antimicrobial Strategies)
Show Figures

Figure 1

17 pages, 3887 KiB  
Article
Dynamics of Fermentation Parameters and Bacterial Community in Rumen of Calves During Dietary Protein Oscillation
by Kun Zhang, Zhanwei Teng, Qing Meng, Shuai Liu, Liping Yuan, Tong Fu, Ningning Zhang and Tengyun Gao
Microorganisms 2024, 12(11), 2123; https://doi.org/10.3390/microorganisms12112123 - 23 Oct 2024
Viewed by 1308
Abstract
Dietary crude protein concentration oscillation can improve the nitrogen utilization efficiency of ruminants. However, little is known about the dynamic changes in microbiota and fermentation in the rumen of calves during the oscillation period. In this study, six calves were fed an oscillating [...] Read more.
Dietary crude protein concentration oscillation can improve the nitrogen utilization efficiency of ruminants. However, little is known about the dynamic changes in microbiota and fermentation in the rumen of calves during the oscillation period. In this study, six calves were fed an oscillating diet at 2-day intervals, including a high-protein diet (HP) and a low-protein diet (LP). The rumen fermentation parameters, plasma urea-N concentration, and rumen bacterial diversity were characterized throughout the oscillation period. The concentrations of volatile fatty acids, NH3-N, and plasma urea-N in rumen changed significantly with an oscillating diet. The abundance of Prevotella_1, Selenomonadales, Succiniclasticum, Clostridiales, Ruminococcaceae, Lachnospiraceae, and Rikenellaceae_RC9_gut_group showed significant changes with diet. Prevotella_1 was positively correlated, and Lachnospiraceae_AC2044_group and Saccharofermentans were negatively correlated with NH3-N. The abundance of Amino Acid Metabolism, Metabolism of Other Amino Acids, and Glycan Biosynthesis and Metabolism pathways, annotated by bacterial functional genes, decreased when the diet changed from HP to LP. The abundance of the Carbohydrate Metabolism pathway increased after the two dietary changes. In conclusion, the plasma urea-N concentration was not as sensitive and quick to adapt to diet changes as the rumen fermentation parameters. Rumen bacteria were responsible for increasing the nitrogen utilization efficiency of calves fed an oscillating diet. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

15 pages, 2658 KiB  
Article
Causal Effects of Gut Microbiota on Sleep-Related Phenotypes: A Two-Sample Mendelian Randomization Study
by Min Yue, Chuandi Jin, Xin Jiang, Xinxin Xue, Nan Wu, Ziyun Li and Lei Zhang
Clocks & Sleep 2023, 5(3), 566-580; https://doi.org/10.3390/clockssleep5030037 - 12 Sep 2023
Cited by 13 | Viewed by 5413
Abstract
Increasing evidence suggests a correlation between changes in the composition of gut microbiota and sleep-related phenotypes. However, it remains uncertain whether these associations indicate a causal relationship. The genome-wide association study summary statistics data of gut microbiota (n = 18,340) was downloaded [...] Read more.
Increasing evidence suggests a correlation between changes in the composition of gut microbiota and sleep-related phenotypes. However, it remains uncertain whether these associations indicate a causal relationship. The genome-wide association study summary statistics data of gut microbiota (n = 18,340) was downloaded from the MiBioGen consortium and the data of sleep-related phenotypes were derived from the UK Biobank, the Medical Research Council-Integrative Epidemiology Unit, Jones SE, the FinnGen consortium. To test and estimate the causal effect of gut microbiota on sleep traits, a two-sample Mendelian randomization (MR) approach using multiple methods was conducted. A series of sensitive analyses, such as horizontal pleiotropy analysis, heterogeneity test, MR Steiger directionality test and “leave-one-out” analysis as well as reverse MR analysis, were conducted to assess the robustness of MR results. The genus Anaerofilum has a negative causal effect on getting up in the morning (odd ratio = 0.977, 95% confidence interval: 0.965–0.988, p = 7.28 × 10−5). A higher abundance of order Enterobacteriales and family Enterobacteriaceae contributed to becoming an “evening person”. Six and two taxa were causally associated with longer and shorter sleep duration, respectively. Specifically, two SCFA-produced genera including Lachnospiraceae UCG004 (odd ratio = 1.029, 95% confidence interval = 1.012–1.046, p = 6.11 × 10−4) and Odoribacter contribute to extending sleep duration. Two obesity-related genera such as Ruminococcus torques (odd ratio = 1.024, 95% confidence interval: 1.011–1.036, p = 1.74 × 10−4) and Senegalimassilia were found to be increased and decreased risk of snoring, respectively. In addition, we found two risk taxa of insomnia such as the order Selenomonadales and one of its classes called Negativicutes. All of the sensitive analysis and reverse MR analysis results indicated that our MR results were robust. Our study revealed the causal effect of gut microbiota on sleep and identified causal risk and protective taxa for chronotype, sleep duration, snoring and insomnia, which has the potential to provide new perspectives for future mechanistic and clinical investigations of microbiota-mediated sleep abnormal patterns and provide clues for developing potential microbiota-based intervention strategies for sleep-related conditions. Full article
(This article belongs to the Section Computational Models)
Show Figures

Figure 1

13 pages, 1707 KiB  
Article
Effect of a Ketogenic Medium Chain Triglyceride-Enriched Diet on the Fecal Microbiota in Canine Idiopathic Epilepsy: A Pilot Study
by Sylvia García-Belenguer, Laura Grasa, Jorge Palacio, Jon Moral and Belén Rosado
Vet. Sci. 2023, 10(4), 245; https://doi.org/10.3390/vetsci10040245 - 24 Mar 2023
Cited by 6 | Viewed by 5048
Abstract
Ketogenic diets have been successfully used in people and dogs with idiopathic epilepsy. This study examined the effect of a ketogenic medium chain triglycerides (MCT)- enriched diet administered for one month on the fecal microbiota of epileptic (n = 11) (six with [...] Read more.
Ketogenic diets have been successfully used in people and dogs with idiopathic epilepsy. This study examined the effect of a ketogenic medium chain triglycerides (MCT)- enriched diet administered for one month on the fecal microbiota of epileptic (n = 11) (six with drug-sensitive epilepsy, DSE; five with drug-refractory epilepsy, DRE) and non-epileptic beagle dogs (n = 12). A significant reduction after diet in the relative abundance of bacteria from the Actinobacteria phylum was observed in all dogs. Epileptic dogs showed a higher relative abundance of Lactobacillus compared with non-epileptic dogs at baseline but these differences disappeared after diet. Epileptic dogs also showed a significantly higher abundance of Negativicutes and Selenomonadales after dietary intervention. Baseline microbiota patterns were similar in non-epileptic beagles and dogs with DSE but significantly different from dogs with DRE. In non-epileptic and DSE groups, the MCT diet decreased the relative abundance of Firmicutes and increased that of Bacteroidetes and Fusobacteria, but the opposite effect was observed in dogs with DRE. These results suggest that the MCT diet effect would depend on individual baseline microbiota patterns and that ketogenic diets could help reduce gut microbiota differences between dogs with DRE and DSE. Full article
Show Figures

Figure 1

16 pages, 4477 KiB  
Article
Assessment of Adaptation Status of Reintroduced Equus Przewalskii Based on Comparative Analysis of Fecal Bacteria with Those of Captive E. Przewalskii, Domestic Horse and Mongolian Wild Ass
by Dini Hu, Chen Wang, Make Ente, Ke Zhang, Dong Zhang, Xuefeng Li, Kai Li and Hongjun Chu
Animals 2022, 12(20), 2874; https://doi.org/10.3390/ani12202874 - 21 Oct 2022
Cited by 4 | Viewed by 2023
Abstract
Intestinal microbiota play an important role in the survival of the host. However, no study to date has elucidated the adjustment of intestinal microbiota of the host during rewilding. Thus, this study aims to describe the intestinal bacterial community of reintroduced Przewalski’s horse [...] Read more.
Intestinal microbiota play an important role in the survival of the host. However, no study to date has elucidated the adjustment of intestinal microbiota of the host during rewilding. Thus, this study aims to describe the intestinal bacterial community of reintroduced Przewalski’s horse (RPH) after being released into their original habitat for approximately 20 years in comparison with that of captive Przewalski’s horse (CPH), sympatric domestic horse (DH) and Mongolian wild ass (MWA) by sequencing the 16S rRNA gene. The results showed that the prevalent bacterial communities were different among CPHs, RPHs, DHs and MWAs at the family level. NMDS and ANOSIM analysis showed that the pattern of bacterial community composition in captive equines was distinct from that in the wild groups. It is shown that some bacteria had significant differences among different taxa (p < 0.001), such as Firmicutes, Bacteroidetes, Armatimonadetes, Clostrida, Bacteroidia, Clostridiales, Bacteroidales, Rikenellaceae and Bacteroidales_UCG-001. These bacteria were associated with the transition from in captive to in the wild (CPH and RPH), which reflected the change of environmental conditions. Meanwhile, Proteobacteria, Clostridia, Bacilli, Negativicutes, Gammaproteobacteria, Clostridiales, Bacillales, Selenomonadales, Pseudomonadales and Planococcaceae were the changed groups among RPHs, MWAs and DHs, which are related to feeding habits and diseases. Our results clearly showed the differences between intestinal microbiota in reintroduced animals and wild animals and led us to understand the survival state of reintroduced animals in the wild. Full article
(This article belongs to the Special Issue The Role of Intestinal Microbiota in the Conservation of Wild Animals)
Show Figures

Figure 1

12 pages, 1851 KiB  
Article
The Gut Microbiome, Seleno-Compounds, and Acute Myocardial Infarction
by Fu-Chun Chiu, Chin-Feng Tsai, Pang-Shuo Huang, Ching-Yu Shih, Mong-Hsun Tsai, Juey-Jen Hwang, Yi-Chih Wang, Eric Y. Chuang, Chia-Ti Tsai and Sheng-Nan Chang
J. Clin. Med. 2022, 11(5), 1462; https://doi.org/10.3390/jcm11051462 - 7 Mar 2022
Cited by 14 | Viewed by 2930
Abstract
Background: Gut microbiome alterations might be considered a metabolic disorder. However, the relationship between the microbiome and acute myocardial infarction (AMI) has not been properly validated. Methods: The feces of 44 subjects (AMI: 19; control: 25) were collected for fecal genomic DNA extraction. [...] Read more.
Background: Gut microbiome alterations might be considered a metabolic disorder. However, the relationship between the microbiome and acute myocardial infarction (AMI) has not been properly validated. Methods: The feces of 44 subjects (AMI: 19; control: 25) were collected for fecal genomic DNA extraction. The variable region V3–V4 of the 16S rRNA gene was sequenced using the Illumina MiSeq platform. The metabolite amounts were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Results: The bacteria were more enriched in the AMI group both in the observed operational taxonomic units (OTUs) and faith phylogenetic diversity (PD) (p-value = 0.01 and <0.001 with 95% CI, individually). The Selenomonadales were less enriched in the AMI group at the family, genus, and species levels (all linear discriminant analysis (LDA) scores > 2). Seleno-compounds were more abundant in the AMI group at the family, genus, and species levels (all LDA scores > 2). Conclusions: This is the first study to demonstrate the association of Selenomonadales and seleno-compounds with the occurrence of AMI. Our findings provide an opportunity to identify a novel approach to prevent and treat AMI. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

Back to TopTop