Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Scyphozoa class

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 996 KiB  
Review
Chemical Defenses in Medusozoa
by Oliver J. Lincoln, Jonathan D. R. Houghton, Muhammad Zakariya, Chiara Lauritano and Isabella D’Ambra
Mar. Drugs 2025, 23(6), 229; https://doi.org/10.3390/md23060229 - 28 May 2025
Viewed by 744
Abstract
Cnidarian defensive strategies are commonly associated with the toxins they synthesize. Because toxins have negative, sometimes lethal, effects on humans, research has focused on them for medical and biotechnological applications. However, Cnidaria possess a variety of defensive systems complementing toxins. In recent decades, [...] Read more.
Cnidarian defensive strategies are commonly associated with the toxins they synthesize. Because toxins have negative, sometimes lethal, effects on humans, research has focused on them for medical and biotechnological applications. However, Cnidaria possess a variety of defensive systems complementing toxins. In recent decades, ecological and biotechnological studies have shed light on these systems, particularly in Anthozoa, while the knowledge of defensive systems different from toxins has remained limited in Medusozoa (Cubozoa, Hydrozoa, Scyphozoa and Staurozoa). In this review, we collected the scattered information available in the literature and organized it into four main topics: UV-light protection compounds, antioxidants, antimicrobial peptides, and endosymbionts. Within the topics, we found the largest amount of data refers to antimicrobial activities, which suggests this line of research as a potential exploitation of this group of organisms often appearing in large aggregates. We also found that some Medusozoa have been studied in detail as model organisms, although the close phylogenetic relationship among classes suggests that some defensive strategies may be common to other members of different classes. Indeed, an integrated understanding of defensive systems has the potential to inform not only ecological and evolutionary frameworks, but also biotechnological applications—from the identification of novel antioxidants or antimicrobial agents to the valorization of Medusozoan biomass. Full article
(This article belongs to the Section Marine Chemoecology for Drug Discovery)
Show Figures

Graphical abstract

18 pages, 5036 KiB  
Article
The Effects of Salinity on the Growth, Survival, and Feeding of Sanderia malayensis (Cnidaria: Scyphozoa) Ephyrae
by Kyong-Ho Shin and Keun-Hyung Choi
Diversity 2025, 17(4), 239; https://doi.org/10.3390/d17040239 - 27 Mar 2025
Viewed by 606
Abstract
Sanderia malayensis is a species from the phylum Cnidaria, class Scyphozoa, and order Semaeostomeae, found in tropical waters, including the Red Sea, Indian Ocean, and Malaysian waters. Its distribution extends to the waters of Australia and Japan. This study aimed to evaluate the [...] Read more.
Sanderia malayensis is a species from the phylum Cnidaria, class Scyphozoa, and order Semaeostomeae, found in tropical waters, including the Red Sea, Indian Ocean, and Malaysian waters. Its distribution extends to the waters of Australia and Japan. This study aimed to evaluate the effects of salinity on the growth and survival of Sanderia malayensis ephyrae and to determine its optimal salinity range. The experimental design included two temperature conditions (20 °C and 24 °C) and three salinity levels (21 PSU, 24 PSU, and 27 PSU). The results indicated that growth and feeding abilities were significantly higher in 24 PSU and 27 PSU environments compared to 21 PSU, with the best results observed at both temperatures. Survival rates were higher at 24 PSU (20 °C: 90%, 24 °C: 79%) and 27 PSU (20 °C: 87%, 24 °C: 86%) compared to 21 PSU (20 °C: 70%, 24 °C: 55%). Despite lower survival at 21 PSU, the species demonstrated wide environmental adaptability. These findings suggest that Sanderia malayensis ephyrae are highly adaptable to varying salinity conditions, indicating the potential for the species to expand its distribution into South Korean waters and other East Asian marine ecosystems, including China and Japan, which are impacted by climate change. Full article
Show Figures

Graphical abstract

21 pages, 717 KiB  
Review
Fatty Acids in Cnidaria: Distribution and Specific Functions
by Vasily I. Svetashev
Mar. Drugs 2025, 23(1), 37; https://doi.org/10.3390/md23010037 - 13 Jan 2025
Viewed by 1229
Abstract
The phylum Cnidaria comprises five main classes—Hydrozoa, Scyphozoa, Hexacorallia, Octocorallia and Cubozoa—that include such widely distributed and well-known animals as hard and soft corals, sea anemones, sea pens, gorgonians, hydroids, and jellyfish. Cnidarians play a very important role in marine ecosystems. The composition [...] Read more.
The phylum Cnidaria comprises five main classes—Hydrozoa, Scyphozoa, Hexacorallia, Octocorallia and Cubozoa—that include such widely distributed and well-known animals as hard and soft corals, sea anemones, sea pens, gorgonians, hydroids, and jellyfish. Cnidarians play a very important role in marine ecosystems. The composition of their fatty acids (FAs) depends on food (plankton and particulate organic matter), symbiotic photosynthetic dinoflagellates and bacteria, and de novo biosynthesis in host tissues. In cnidarian lipids, besides the common FA characteristics of marine organisms, numerous new and rare FAs are also found. All Octocorallia species and some Scyphozoa jellyfish contain polyunsaturated FAs (PUFAs) with 24 and 26 carbon atoms. The coral families can be distinguished by specific FA profiles: the presence of uncommon FAs or high/low levels of common fatty acids. Many of the families have characteristic FAs: Acroporidae are characterized by 18:3n6, eicosapentaenoic acid (EPA) 20:5n3, 22:4n6, and 22:5n3; Pocilloporidae by 20:3n6, 20:4n3, and docosahexaenoic acid 22:6n3 (DHA); and Poritidae by arachidonic acid (AA) and DHA. The species of Faviidae show elevated concentrations of 18:3n6 and 22:5n3 acids. Dendrophylliidae, being azooxanthellate corals, have such dominant acids as EPA and 22:5n3 and a low content of DHA, which is the major PUFA in hermatypic corals. The major and characteristic PUFAs for Milleporidae (class Hydrozoa) are DHA and 22:5n6, though in scleractinian corals, the latter acid is found only in trace amounts. Full article
(This article belongs to the Special Issue Fatty Acids from Marine Organisms, 2nd Edition)
Show Figures

Figure 1

20 pages, 11558 KiB  
Article
Reconstructing the Biogeographic History of the Genus Aurelia Lamarck, 1816 (Cnidaria, Scyphozoa), and Reassessing the Nonindigenous Status of A. solida and A. coerulea in the Mediterranean Sea
by Alfredo Fernández-Alías, Concepción Marcos and Angel Pérez-Ruzafa
Diversity 2023, 15(12), 1181; https://doi.org/10.3390/d15121181 - 29 Nov 2023
Cited by 2 | Viewed by 2560
Abstract
The genus Aurelia is one of the most extensively studied within the class Scyphozoa. However, much of the research was historically attributed to the species Aurelia aurita (Linnaeus, 1758) before the recognition of its taxonomic complexity. Initially considered cosmopolitan and globally distributed, recent [...] Read more.
The genus Aurelia is one of the most extensively studied within the class Scyphozoa. However, much of the research was historically attributed to the species Aurelia aurita (Linnaeus, 1758) before the recognition of its taxonomic complexity. Initially considered cosmopolitan and globally distributed, recent phylogenetic analysis has challenged this assumption. Consequently, the current distribution of species within the genus Aurelia and the processes that led to this distribution remain largely unexplored. After genetically confirming that the species traditionally present in the Mar Menor coastal lagoon in the southwestern Mediterranean corresponds to A. solida, we compiled data on the locations where moon jellyfish species have been genetically identified and mapped these coordinates to the geological period when the genus Aurelia diverged from other scyphozoan genera. We propose two hypotheses to explain the disjunct distribution of certain species. The first one assumes recent human-mediated introductions, while the second posits an absence of introductions. Both hypotheses, supported by fossil and historical records, suggest a Paleo-Tethys origin of the genus Aurelia. Migration from this area explains most of the genus’s current distribution without human intervention, being the Mediterranean Sea, where A. solida should be considered autochthonous, part of their natural distribution range. Full article
(This article belongs to the Special Issue Diversity, Phylogeny and Evolutionary History of Cnidaria)
Show Figures

Figure 1

27 pages, 2261 KiB  
Review
Investigation of Best Practices for Venom Toxin Purification in Jellyfish towards Functional Characterisation
by Blake Lausen, Anahita Ahang, Scott Cummins and Tianfang Wang
Toxins 2023, 15(3), 170; https://doi.org/10.3390/toxins15030170 - 21 Feb 2023
Cited by 4 | Viewed by 4388
Abstract
The relative lack of marine venom pharmaceuticals can be anecdotally attributed to difficulties in working with venomous marine animals, including how to maintain venom bioactivity during extraction and purification. The primary aim of this systematic literature review was to examine the key factors [...] Read more.
The relative lack of marine venom pharmaceuticals can be anecdotally attributed to difficulties in working with venomous marine animals, including how to maintain venom bioactivity during extraction and purification. The primary aim of this systematic literature review was to examine the key factors for consideration when extracting and purifying jellyfish venom toxins to maximise their effectiveness in bioassays towards the characterisation of a single toxin.An up-to-date database of 119 peer-reviewed research articles was established for all purified and semi-purified venoms across all jellyfish, including their level of purification, LD50, and the types of experimental toxicity bioassay used (e.g., whole animal and cell lines). We report that, of the toxins successfully purified across all jellyfish, the class Cubozoa (i.e., Chironex fleckeri and Carybdea rastoni) was most highly represented, followed by Scyphozoa and Hydrozoa. We outline the best practices for maintaining jellyfish venom bioactivity, including strict thermal management, using the “autolysis” extraction method and two-step liquid chromatography purification involving size exclusion chromatography. To date, the box jellyfish C. fleckeri has been the most effective jellyfish venom model with the most referenced extraction methods and the most isolated toxins, including CfTX-A/B. In summary, this review can be used as a resource for the efficient extraction, purification, and identification of jellyfish venom toxins. Full article
Show Figures

Figure 1

9 pages, 1697 KiB  
Communication
Effect of Rinse Solutions on Rhizostoma pulmo (Cnidaria: Scyphozoa) Stings and the Ineffective Role of Vinegar in Scyphozoan Jellyfish Species
by Ainara Ballesteros, Macarena Marambio, Carles Trullas, Eric Jourdan, Jose Tena-Medialdea and Josep-Maria Gili
Int. J. Environ. Res. Public Health 2023, 20(3), 2344; https://doi.org/10.3390/ijerph20032344 - 28 Jan 2023
Cited by 3 | Viewed by 2655
Abstract
Rhizostoma pulmo is a widely distributed scyphozoan in the Mediterranean Sea. Their stings result mainly in erythema, small vesicles, or/and pain, and cause a high number of bathers to seek assistance from first-aid services during the summer season. Despite the threat that jellyfish [...] Read more.
Rhizostoma pulmo is a widely distributed scyphozoan in the Mediterranean Sea. Their stings result mainly in erythema, small vesicles, or/and pain, and cause a high number of bathers to seek assistance from first-aid services during the summer season. Despite the threat that jellyfish stings represent to public health, there is disagreement in the scientific community on first-aid protocols, with the dispute largely centered around the effectiveness of vinegar. In the present research, we investigated the effect of commonly used rinse solutions on nematocyst discharge in R. pulmo and the effect of vinegar on three more scyphozoans (Aurelia sp., Cassiopea sp., and Rhizostoma luteum). Scented ammonia, vinegar, and acetic acid triggered nematocyst discharge in R. pulmo. Vinegar also caused nematocyst discharge in Aurelia sp., Cassiopea sp., and R. luteum. In contrast, seawater, baking soda, freshwater, urine, and hydrogen peroxide were considered neutral solutions that did not induce nematocyst discharge. These results indicate that the use of vinegar, acetic acid, or commercial products based on these compounds is counterproductive. Their use can worsen pain and discomfort caused not only by R. pulmo stings but also by those of any scyphozoan. The use of seawater is recommended for cleaning the R. pulmo sting site until an inhibitor solution that irreversibly prevents nematocyst discharge is discovered. Full article
Show Figures

Figure 1

17 pages, 4433 KiB  
Article
Comparative Study of Toxic Effects and Pathophysiology of Envenomations Induced by Carybdea brevipedalia (Cnidaria: Cubozoa) and Nemopilema nomurai (Cnidaria: Scyphozoa) Jellyfish Venoms
by Du Hyeon Hwang, Phil-Ok Koh, Ramachandran Loganathan Mohan Prakash, Jinho Chae, Changkeun Kang and Euikyung Kim
Toxins 2022, 14(12), 831; https://doi.org/10.3390/toxins14120831 - 28 Nov 2022
Cited by 9 | Viewed by 3583
Abstract
Jellyfish stings can result in local tissue damage and systemic pathophysiological sequelae. Despite constant occurrences of jellyfish stings in oceans throughout the world, the toxinological assessment of these jellyfish envenomations has not been adequately reported in quantitative as well as in qualitative measurements. [...] Read more.
Jellyfish stings can result in local tissue damage and systemic pathophysiological sequelae. Despite constant occurrences of jellyfish stings in oceans throughout the world, the toxinological assessment of these jellyfish envenomations has not been adequately reported in quantitative as well as in qualitative measurements. Herein, we have examined and compared the in vivo toxic effects and pathophysiologic alterations using experimental animal models for two representative stinging jellyfish classes, i.e., Cubozoa and Scyphozoa. For this study, mice were administered with venom extracts of either Carybdea brevipedalia (Cnidaria: Cubozoa) or Nemopilema nomurai (Cnidaria: Scyphozoa). From the intraperitoneal (IP) administration study, the median lethal doses leading to the deaths of mice 24 h post-treatment after (LD50) for C. brevipedalia venom (CbV) and N. nomurai venom (NnV) were 0.905 and 4.4697 mg/kg, respectively. The acute toxicity (i.e., lethality) of CbV was much higher with a significantly accelerated time to death value compared with those of NnV. The edematogenic activity induced by CbV was considerably (83.57/25 = 3.343-fold) greater than NnV. For the evaluation of their dermal toxicities, the epidermis, dermis, subcutaneous tissues, and skeletal muscles were evaluated toxinologically/histopathologically following the intradermal administration of the venoms. The minimal hemorrhagic doses (MHD) of the venoms were found to be 55.6 and 83.4 μg/mouse for CbV and NnV, respectively. Furthermore, the CbV injection resulted in extensive alterations of mouse dermal tissues, including severe edema, and hemorrhagic/necrotic lesions, with the minimum necrotizing dose (MND) of 95.42 µg/kg body weight. The skin damaging effects of CbV appeared to be considerably greater, compared with those of NnV (MND = 177.99 µg/kg). The present results indicate that the toxicities and pathophysiologic effects of jellyfish venom extracts may vary from species to species. As predicted from the previous reports on these jellyfish envenomations, the crude venom extracts of C. brevipedalia exhibit much more potent toxicity than that of N. nomurai in the present study. These observations may contribute to our understanding of the toxicities of jellyfish venoms, as well as their mode of toxinological actions, which might be helpful for establishing the therapeutic strategies of jellyfish stings. Full article
(This article belongs to the Special Issue Venom-Induced Tissue Damage)
Show Figures

Figure 1

28 pages, 850 KiB  
Review
A Review of Toxins from Cnidaria
by Isabella D’Ambra and Chiara Lauritano
Mar. Drugs 2020, 18(10), 507; https://doi.org/10.3390/md18100507 - 6 Oct 2020
Cited by 70 | Viewed by 11282
Abstract
Cnidarians have been known since ancient times for the painful stings they induce to humans. The effects of the stings range from skin irritation to cardiotoxicity and can result in death of human beings. The noxious effects of cnidarian venoms have stimulated the [...] Read more.
Cnidarians have been known since ancient times for the painful stings they induce to humans. The effects of the stings range from skin irritation to cardiotoxicity and can result in death of human beings. The noxious effects of cnidarian venoms have stimulated the definition of their composition and their activity. Despite this interest, only a limited number of compounds extracted from cnidarian venoms have been identified and defined in detail. Venoms extracted from Anthozoa are likely the most studied, while venoms from Cubozoa attract research interests due to their lethal effects on humans. The investigation of cnidarian venoms has benefited in very recent times by the application of omics approaches. In this review, we propose an updated synopsis of the toxins identified in the venoms of the main classes of Cnidaria (Hydrozoa, Scyphozoa, Cubozoa, Staurozoa and Anthozoa). We have attempted to consider most of the available information, including a summary of the most recent results from omics and biotechnological studies, with the aim to define the state of the art in the field and provide a background for future research. Full article
(This article belongs to the Special Issue Chemical Defense in Marine Organisms)
Show Figures

Figure 1

16 pages, 952 KiB  
Review
Insight into the Molecular and Functional Diversity of Cnidarian Neuropeptides
by Toshio Takahashi and Noriyo Takeda
Int. J. Mol. Sci. 2015, 16(2), 2610-2625; https://doi.org/10.3390/ijms16022610 - 23 Jan 2015
Cited by 32 | Viewed by 8684
Abstract
Cnidarians are the most primitive animals to possess a nervous system. This phylum is composed of the classes Scyphozoa (jellyfish), Cubozoa (box jellyfish), and Hydrozoa (e.g., Hydra, Hydractinia), which make up the subphylum Medusozoa, as well as the class Anthozoa (sea [...] Read more.
Cnidarians are the most primitive animals to possess a nervous system. This phylum is composed of the classes Scyphozoa (jellyfish), Cubozoa (box jellyfish), and Hydrozoa (e.g., Hydra, Hydractinia), which make up the subphylum Medusozoa, as well as the class Anthozoa (sea anemones and corals). Neuropeptides have an early evolutionary origin and are already abundant in cnidarians. For example, from the cnidarian Hydra, a key model system for studying the peptides involved in developmental and physiological processes, we identified a wide variety of novel neuropeptides from Hydra magnipapillata (the Hydra Peptide Project). Most of these peptides act directly on muscle cells and induce contraction and relaxation. Some peptides are involved in cell differentiation and morphogenesis. In this review, we describe FMRFamide-like peptides (FLPs), GLWamide-family peptides, and the neuropeptide Hym-355; FPQSFLPRGamide. Several hundred FLPs have been isolated from invertebrate animals such as cnidarians. GLWamide-family peptides function as signaling molecules in muscle contraction, metamorphosis, and settlement in cnidarians. Hym-355; FPQSFLPRGamide enhances neuronal differentiation in Hydra. Recently, GLWamide-family peptides and Hym-355; FPQSFLPRGamide were shown to trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish Cytaeis uchidae. These findings suggest the importance of these neuropeptides in both developmental and physiological processes. Full article
(This article belongs to the Special Issue Bioactive Carbohydrates and Peptides)
Show Figures

Figure 1

Back to TopTop