Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Schizaphis graminum (Rondani)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2046 KiB  
Article
Shotgun Metagenome Analysis of Two Schizaphis graminum Biotypes over Time With and Without Carried Cereal Yellow Dwarf Virus
by Yan M. Crane, Charles F. Crane, Subhashree Subramanyam and Brandon J. Schemerhorn
Insects 2025, 16(6), 554; https://doi.org/10.3390/insects16060554 - 23 May 2025
Viewed by 556
Abstract
The greenbug aphid (Schizaphis graminum (Rondani)) is a major pest of wheat and an important vector of wheat viruses. An RNA-seq study was conducted to investigate the microbial effects of two greenbug genotypes, the presence or absence of cereal yellow dwarf virus, [...] Read more.
The greenbug aphid (Schizaphis graminum (Rondani)) is a major pest of wheat and an important vector of wheat viruses. An RNA-seq study was conducted to investigate the microbial effects of two greenbug genotypes, the presence or absence of cereal yellow dwarf virus, and the condition of the wheat host over a 20-day time course of unrestricted greenbug feeding. Messenger RNA reads were mapped to ca. 47,000 bacterial, 1218 archaeal, 14,165 viral, 571 fungal, and 94 protozoan reference or representative genomes, plus greenbug itself and its wheat host. Taxon counts were analyzed with QIIME2 and DESeq2. Distinct early (days 1 through 10) and late (days 15 and 20) communities differed in the abundance of typical enteric genera (Shigella, Escherichia, Citrobacter), which declined in the late community, while the ratio of microbial to greenbug read counts declined 50% and diversity measures increased. The nearly universal aphid endosymbiont, Buchnera aphidicola, accounted for less than 25% of the read counts in both communities. There were 302 differentially expressed (populated) genera with respect to early and late dates, while 25 genera differed between the greenbug genotypes and nine differed between carrier and virus-free greenbugs. The late community was likely responding to starvation as the wheat host succumbed to aphid feeding. Our results add to basic knowledge about aphid microbiomes and offer an attractive alternative method to assess insect microbiomes. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

20 pages, 3423 KiB  
Article
Examining Innovative Technologies: Nano-Chelated Fertilizers for Management of Wheat Aphid (Schizaphis graminum Rondani)
by Masoud Chamani, Bahram Naseri, Hooshang Rafiee-Dastjerdi, Javid Emaratpardaz, Reza Farshbaf Pourabad, Ali Chenari Bouket, Tomasz Oszako and Lassaad Belbahri
Insects 2024, 15(3), 209; https://doi.org/10.3390/insects15030209 - 20 Mar 2024
Cited by 2 | Viewed by 1867
Abstract
The use of nanofertilizers has both advantages and concerns. One benefit is that nano-fertilizers can enhance plant resistance against insect pests, making them a valuable strategy in integrated pest management (IPM). This study focused on the effect of wheat leaves treated with nano-chelated [...] Read more.
The use of nanofertilizers has both advantages and concerns. One benefit is that nano-fertilizers can enhance plant resistance against insect pests, making them a valuable strategy in integrated pest management (IPM). This study focused on the effect of wheat leaves treated with nano-chelated fertilizers and nitrogen (N) fertilizer on the wheat aphid (Schizaphis graminum Rondani), a harmful pest of wheat plants that transmits dangerous viruses. The nano-Cu treatment showed the longest pre-adult longevity. Additionally, the nano-Cu treatment resulted in the lowest adult longevity, fecundity, nymphoposition day number, intrinsic rate of population growth (r), finite rate of population increase (λ), and net reproductive rate (R0) and gross reproductive rate (GRR). Also, nano-Cu treatment led to the highest amount of (T). The N treatment led to the highest levels of fecundity, nymphoposition days, r, λ, and R0. Nano-Fe and nano-Zn demonstrated fewer negative effects on S. graminum life table parameters than nano-Cu. Our results indicate that N treatment yielded numerous advantageous effects on the wheat aphid while simultaneously impeding the efficacy of the aphid control program. Conversely, nano-Cu treatment exhibited a detrimental influence on various parameters of the aphid’s life table, resulting in a reduction in the pest’s fitness. Consequently, the integration of nano-Cu should be seriously considered as a viable option in the IPM of the wheat aphid. Full article
Show Figures

Figure 1

13 pages, 1458 KiB  
Article
Predation and Biocontrol Potential of Eupeodes corollae Fabricius (Diptera: Syrphidae) on Wheat Aphids
by Shanshan Jiang, Hui Li, Hainuo Wang, Xiaoxia Liu and Kongming Wu
Agronomy 2024, 14(3), 600; https://doi.org/10.3390/agronomy14030600 - 16 Mar 2024
Cited by 2 | Viewed by 1412
Abstract
Wheat aphids are major pests of wheat and a significant threat to global food security. Eupeodes corollae Fabricius is one of the dominant species of wheat field hoverflies, but its ability and role in wheat aphid control lack systematic research. This study on [...] Read more.
Wheat aphids are major pests of wheat and a significant threat to global food security. Eupeodes corollae Fabricius is one of the dominant species of wheat field hoverflies, but its ability and role in wheat aphid control lack systematic research. This study on the predatory function responses of E. corollae to Rhopalosiphum padi Linnaeus, Schizaphis graminum Rondani, and Sitobion miscanthi, Takahashi showed that the maximum daily predation (1/Th) of 2nd instar E. corollae larvae was 166.67, 125.00, and 142.86, and that of 3rd instar larvae was 333.33, 250.00, and 250.00, respectively. The cage simulation test indicated that the wheat aphid population decline rate was 100% at the 60th hour of inoculation of 3rd instar E. corollae larvae at a 1:100 ratio. Eupeodes corollae exhibited a predatory relationship with all three wheat aphid species in the wheat fields of Hebei Province, China, and the corrected predation detection rates of E. corollae larvae against R. padi, S. graminum, and S. miscanthi were 12.36%, 1.08%, and 28.77% in 2022, and 6.74%, 0.82%, and 37.56% in 2023, respectively. The results of this study clarify the predatory ability of E. corollae on wheat aphids and the predatory relationship between them and provide technical support for the management of wheat aphids using the bio-control ecological service function of E. corollae. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

14 pages, 1611 KiB  
Article
Newly Developed Restorer Lines of Sorghum [Sorghum bicolor (L.) Moench] Resistant to Greenbug
by Evgeny E. Radchenko, Irina N. Anisimova, Maria K. Ryazanova, Ilya A. Kibkalo and Natalia V. Alpatieva
Plants 2024, 13(3), 425; https://doi.org/10.3390/plants13030425 - 31 Jan 2024
Viewed by 2121
Abstract
Eight lines of grain sorghum [Sorghum bicolor (L.) Moench], which can be used as a promising source material in heterotic hybrid breeding as pollen fertility restorers and donors of resistance to the greenbug (Schizaphis graminum Rondani), are characterized. The new restorer [...] Read more.
Eight lines of grain sorghum [Sorghum bicolor (L.) Moench], which can be used as a promising source material in heterotic hybrid breeding as pollen fertility restorers and donors of resistance to the greenbug (Schizaphis graminum Rondani), are characterized. The new restorer lines (R-lines) were developed by crossing the maternal sterile line Nizkorosloe 81s (CMS A1) with two lines selected from the grain sorghum collection accessions VIR-928 and VIR-929 as the paternal forms. The R-lines were genotyped using PCR markers, and also characterized by height, duration of the seedling–flowering period, and some of the technological properties of flour. With the use of microsatellite markers linked to the Rf genes and by hybridological analysis, it was shown that the new lines carry the dominant allele of the gene Rf2. The PCoA analysis demonstrated clear differences of each R-line from the parents. The genotypes of the new lines and their parental forms for the Rf2 locus were confirmed by applying three allele-specific codominant CAPS markers which detected SNPs in the candidate Rf2 gene. All new lines were highly fertile, as demonstrated by cytological analysis of acetocarmine-stained pollen preparations. A high resistance to the greenbug was demonstrated for each new R-line both in the laboratory and field conditions against a severe aphid infestation. Grain quality parameters such as protein content and dough rheological properties varied widely and were quite satisfactory in some R-lines. Characteristics common to all eight sorghum lines studied, such as the ability to restore pollen fertility in the F1 generation, good pollen quality, greenbug resistance, early ripening, spreading panicle, and low stature, allow us to recommend them for producing commercial F1 hybrids with satisfactory grain quality for both fodder and food purposes. Full article
(This article belongs to the Special Issue Genetics and Genomics of Crop Breeding and Improvement)
Show Figures

Figure 1

21 pages, 3744 KiB  
Article
Some Physiological Effects of Nanofertilizers on Wheat-Aphid Interactions
by Masoud Chamani, Bahram Naseri, Hooshang Rafiee-Dastjerdi, Javid Emaratpardaz, Asgar Ebadollahi and Franco Palla
Plants 2023, 12(14), 2602; https://doi.org/10.3390/plants12142602 - 10 Jul 2023
Cited by 8 | Viewed by 2441
Abstract
The increasing use of nanofertilizers in modern agriculture and their impact on crop yield and pest management require further research. In this study, the effects of nano-Fe, -Zn, and -Cu (which are synthesized based on nanochelating technology), and urea (N) fertilizers on the [...] Read more.
The increasing use of nanofertilizers in modern agriculture and their impact on crop yield and pest management require further research. In this study, the effects of nano-Fe, -Zn, and -Cu (which are synthesized based on nanochelating technology), and urea (N) fertilizers on the antioxidant activities of wheat plants (cv. Chamran), and the wheat green aphid Schizaphis graminum (Rondani) are investigated. The authors observed the highest levels of phenolics in non-infested nano-Zn-treated plants (26% higher compared with control). The highest H2O2 levels are in the infested and non-infested nano-Zn-treated and infested nano-Fe-treated plants (in infested nano-Zn and nano-Fe treated plants, 18% and non-infested nano-Zn-treated plants, 28% higher compared with control). The highest peroxidase (POX) activity is observed in the infested and non-infested N-treated and non-infested water-treated plants (almost 14%, 37%, and 46% higher than control, respectively). The lowest activity is in the infested plants’ nano-Zn and -Fe treatments (almost 7 and 5 folds lower compared to the control, respectively). The highest and lowest catalase (CAT) activity are in the infested N-treated plants (almost 42% higher than control) and water-treated plants, respectively. The infested nano-Zn, -Fe, -Cu and Hoagland-treated plants showed the highest superoxide dismutase (SOD) activity. Regarding the antioxidant enzyme activities of S. graminum, the highest POX activity is in the nano-Cu treatment (more than two folds higher compared with control); the highest CAT and SOD activities are in the nano-Cu and -Zn treatments. It can be concluded that the application of nanofertilizers caused increasing effects on the wheat plant’s antioxidant system and its resistance to S. graminum. Full article
(This article belongs to the Special Issue Insect-Plant Interaction)
Show Figures

Figure 1

10 pages, 3333 KiB  
Article
Efficacy of Imidacloprid Seed Treatments against Four Wheat Aphids under Laboratory and Field Conditions
by Zhi Zhang, Yaping Li, Xiangrui Li, Xun Zhu and Yunhui Zhang
Plants 2023, 12(2), 238; https://doi.org/10.3390/plants12020238 - 4 Jan 2023
Cited by 8 | Viewed by 2417
Abstract
Imidacloprid seed treatments are effective at reducing the cohorts of many insect pests on crops such as cotton, corn, and cereals. The effects of imidacloprid seed treatments depend on the aphid species. In China, there are four wheat aphid species—Sitobion avenae (Fabricius), [...] Read more.
Imidacloprid seed treatments are effective at reducing the cohorts of many insect pests on crops such as cotton, corn, and cereals. The effects of imidacloprid seed treatments depend on the aphid species. In China, there are four wheat aphid species—Sitobion avenae (Fabricius), Rhopalosiphum padi (Linnaeus), Schizaphis graminum (Rondani), and Metopolophium dirhodum (Walker)—and for a given region, these four aphid species differ in dominance with changes in cultivation practices and climate. Therefore, it is necessary to evaluate the effects of imidacloprid seed treatments on the four different aphid species. In experiments in the laboratory, imidacloprid seed treatments significantly reduced the survival rates of S. avenae, R. padi, and S. graminum to 57.33 ± 2.86%, 12.67 ± 1.92%, and 20.66 ± 2.33%, respectively, but for M. dirhodum, there was no significant difference between the control (96.33 ± 1.08%) and the treatment (97.00 ± 0.98%). The fecundities of the four aphid species were much reduced, especially for R. padi when feeding on treated wheat plants. For the field survey, only three aphid species were considered because the density of S. graminum was too low to be analyzed. The effects of imidacloprid seed treatment on the three aphid species in the field were consistent with the laboratory results. Imidacloprid seed treatment reduced the population sizes of S. avenae and R. padi at rates of 70.30 ± 3.15% and 87.62 ± 2.28%, respectively, for the whole wheat season in the field. For M. dirhodum, imidacloprid seed treatments were less effective, and the densities of M. dirhodum increased on four sample days. From this study, we confirmed that the effect of imidacloprid seed treatment varied with the composition of aphid species, being especially less effective for M. dirhodum. Full article
(This article belongs to the Special Issue Wheat–Pest Interaction: From Biology to Integrated Management)
Show Figures

Figure 1

Back to TopTop