Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Satellite Rainfall Products (SRPs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6113 KiB  
Article
Cumulative Rainfall Radar Recalibration with Rain Gauge Data Using the Colour Pattern Regression Algorithm QGIS Plugin
by Pablo Blanco-Gómez, Pau Estrany-Planas and José Luis Jiménez-García
Remote Sens. 2024, 16(18), 3496; https://doi.org/10.3390/rs16183496 - 20 Sep 2024
Cited by 1 | Viewed by 1465
Abstract
Climate change is a major issue in wastewater management at local and regional levels, as it affects the frequency of flooding and therefore the need to update infrastructure and design regulations. To this end, rainfall data are the main input to hydraulic models [...] Read more.
Climate change is a major issue in wastewater management at local and regional levels, as it affects the frequency of flooding and therefore the need to update infrastructure and design regulations. To this end, rainfall data are the main input to hydraulic models used for the design of drainage systems and, in advanced contexts, for their real-time monitoring. Field observations are of great interest and water authorities are increasing the number of existing rain gauges, but at present they are scarce and require maintenance, so their number needs to be considered with their O&M costs. Remote sensors, including both the existing satellite rain products (SRPs) and radar imagery (RI), can complete the spatial distribution of rainfall and optimise the cost of observations. While most SRPs are based on re-analysis and have a lag in availability, RI can be obtained in near real time and is becoming increasingly popular in weather forecasting applications. Unfortunately, actual rainfall forecasts from RI observations are not accurate enough for real-time monitoring of drainage systems. In this paper, the Colour Pattern Regression (CPR) algorithm is used to recalibrate the 6 h rainfall values from RI provided by the Agencia Estatal de Meteorología (AEMET) with the observed rain gauge data, using as a case study the metropolitan area of Palma (Spain). Full article
(This article belongs to the Special Issue Remote Sensing of Floods: Progress, Challenges and Opportunities)
Show Figures

Figure 1

19 pages, 4465 KiB  
Article
Appraisal of Satellite Rainfall Products for Malwathu, Deduru, and Kalu River Basins, Sri Lanka
by Helani Perera, Nipuna Senaratne, Miyuru B. Gunathilake, Nitin Mutill and Upaka Rathnayake
Climate 2022, 10(10), 156; https://doi.org/10.3390/cli10100156 - 20 Oct 2022
Cited by 4 | Viewed by 3264
Abstract
Satellite Rainfall Products (SRPs) are now in widespread use around the world as a better alternative for scarce observed rain gauge data. Upon proper analysis of the SRPs and observed rainfall data, SRP data can be used in many hydrological applications. This evaluation [...] Read more.
Satellite Rainfall Products (SRPs) are now in widespread use around the world as a better alternative for scarce observed rain gauge data. Upon proper analysis of the SRPs and observed rainfall data, SRP data can be used in many hydrological applications. This evaluation is very much necessary since, it had been found that their performances vary with different areas of interest. This research looks at the three prominent river basins; Malwathu, Deduru, and Kalu of Sri Lanka and evaluates six selected SRPs, namely, IMERG, TRMM 3B42, TRMM 3B42-RT, PERSIANN, PERSIANN-CCS, PERSIANN-CDR against 15+ years of observed rainfall data with the use of several indices. Four Continuous Evaluation Indices (CEI) such as Root Mean Square Error (RMSE), Percentage Bias (PBIAS), Pearson’s Correlation Coefficient (r), and Nash Sutcliffe Efficiency (NSE) were used to evaluate the accuracy of SRPs and four Categorical Indices (CI) namely, Probability of Detection (POD), Critical Success Index (CSI), False Alarm Ratio (FAR) and Proportion Correct (PC) was used to evaluate the detection and prediction accuracy of the SRPs. Then, the Mann–Kendall Test (MK test) was used to identify trends in the datasets and Theil’s and Sens Slope Estimator to quantify the trends observed. The study of categorical indicators yielded varying findings, with TRMM-3B42 performing well in the dry zone and IMERG doing well in the wet zone and intermediate zone of Sri Lanka. Regarding the CIs in the three basins, overall, IMERG was the most reliable. In general, all three basins had similar POD and PC findings. The SRPs, however, underperformed in the dry zone in terms of CSI and FAR. Similar findings were found in the CEI analysis, as IMERG gave top performance across the board for all four CEIs in the three basins. The three basins’ overall weakest performer was PERSIANN-CCS. The trend analysis revealed that there were very few significant trends in the observed data. Even when significant trends were apparent, the SRP projections seldom captured them. TRMM-3B42 RT had the best trend prediction performance. However, Sen’s slope analysis revealed that while the sense of the trend was properly anticipated, the amplitude of the prediction significantly differed from that of the observed data. Full article
(This article belongs to the Special Issue Subseasonal to Seasonal Climate Forecasting)
Show Figures

Figure 1

21 pages, 4231 KiB  
Article
Assessment of PERSIANN-CCS, PERSIANN-CDR, SM2RAIN-ASCAT, and CHIRPS-2.0 Rainfall Products over a Semi-Arid Subtropical Climatic Region
by Muhammad Naveed Anjum, Muhammad Irfan, Muhammad Waseem, Megersa Kebede Leta, Usama Muhammad Niazi, Saif ur Rahman, Abdulnoor Ghanim, Muhammad Ahsan Mukhtar and Muhammad Umer Nadeem
Water 2022, 14(2), 147; https://doi.org/10.3390/w14020147 - 7 Jan 2022
Cited by 34 | Viewed by 4738
Abstract
This study compares the performance of four satellite-based rainfall products (SRPs) (PERSIANN-CCS, PERSIANN-CDR, SM2RAIN-ASCAT, and CHIRPS-2.0) in a semi-arid subtropical region. As a case study, Punjab Province of Pakistan was considered for this assessment. Using observations from in-situ meteorological stations, the uncertainty in [...] Read more.
This study compares the performance of four satellite-based rainfall products (SRPs) (PERSIANN-CCS, PERSIANN-CDR, SM2RAIN-ASCAT, and CHIRPS-2.0) in a semi-arid subtropical region. As a case study, Punjab Province of Pakistan was considered for this assessment. Using observations from in-situ meteorological stations, the uncertainty in daily, monthly, seasonal, and annual rainfall estimates of SRPs at pixel and regional scales during 2010–2018 were examined. Several evaluation indices (Correlation Coefficient (CC), Root Mean Square Error (RMSE), Bias, and relative Bias (rBias), as well as categorical indices (Probability of Detection (POD), Critical Success Index (CSI), and False Alarm Ration (FAR)) were used to assess the performance of the SRPs. The following findings were found: (1) CHIRPS-2.0 and SM2RAIN-ASCAT products were capable of tracking the spatiotemporal variability of observed rainfall, (2) all SRPs had higher overall performances in the northwestern parts of the province than the other parts, (3) all SRP estimates were in better agreement with ground-based monthly observations than daily records, and (4) on the seasonal scale, CHIRPS-2.0 and SM2RAIN-ASCAT were better than PERSIANN-CCS and PERSIANN. In all seasons, CHIRPS-2.0 and SM2RAIN-ASCAT outperformed PERSIANN-CCS and PERSIANN-CDR. Based on our findings, we recommend that hydrometeorological investigations in Pakistan’s Punjab Province employ monthly estimates of CHIRPS-2.0 and SM2RAIN-ASCAT products. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

23 pages, 5127 KiB  
Article
Performance Evaluation of Satellite-Based Rainfall Products over Nigeria
by Kingsley N. Ogbu, Nina Rholan Hounguè, Imoleayo E. Gbode and Bernhard Tischbein
Climate 2020, 8(10), 103; https://doi.org/10.3390/cli8100103 - 24 Sep 2020
Cited by 31 | Viewed by 5959
Abstract
Understanding the variability of rainfall is important for sustaining rain-dependent agriculture and driving the local economy of Nigeria. Paucity and inadequate rain gauge network across Nigeria has made satellite-based rainfall products (SRPs), which offer a complete spatial and consistent temporal coverage, a better [...] Read more.
Understanding the variability of rainfall is important for sustaining rain-dependent agriculture and driving the local economy of Nigeria. Paucity and inadequate rain gauge network across Nigeria has made satellite-based rainfall products (SRPs), which offer a complete spatial and consistent temporal coverage, a better alternative. However, the accuracy of these products must be ascertained before use in water resource developments and planning. In this study, the performances of Climate Hazards Group Infrared Precipitation with Station data (CHIRPS), Precipitation estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR), and Tropical Applications of Meteorology using SATellite data and ground-based observations (TAMSAT), were evaluated to investigate their ability to reproduce long term (1983–2013) observed rainfall characteristics derived from twenty-four (24) gauges in Nigeria. Results show that all products performed well in terms of capturing the observed annual cycle and spatial trends in all selected stations. Statistical evaluation of the SRPs performance show that CHIRPS agree more with observations in all climatic zones by reproducing the local rainfall characteristics. The performance of PERSIANN and TAMSAT, however, varies with season and across the climatic zones. Findings from this study highlight the benefits of using SRPs to augment or fill gaps in the distribution of local rainfall data, which is critical for water resources planning, agricultural development, and policy making. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

19 pages, 3592 KiB  
Article
Application of Satellite Rainfall Products for Flood Inundation Modelling in Kelantan River Basin, Malaysia
by Tze Huey Tam, Muhammad Zulkarnain Abd Rahman, Sobri Harun, Muhammad Nassir Hanapi and Ismaila Usman Kaoje
Hydrology 2019, 6(4), 95; https://doi.org/10.3390/hydrology6040095 - 6 Nov 2019
Cited by 28 | Viewed by 8923
Abstract
The advent of satellite rainfall products can provide a solution to the scarcity of observed rainfall data. The present study aims to evaluate the performance of high spatial-temporal resolution satellite rainfall products (SRPs) and rain gauge data in hydrological modelling and flood inundation [...] Read more.
The advent of satellite rainfall products can provide a solution to the scarcity of observed rainfall data. The present study aims to evaluate the performance of high spatial-temporal resolution satellite rainfall products (SRPs) and rain gauge data in hydrological modelling and flood inundation mapping. Four SRPs, Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) - Early, - Late (IMERG-E, IMERG-L), Global Satellite Mapping of Precipitation-Near Real Time (GSMaP-NRT), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks- Cloud Classification System (PERSIANN-CCS) and rain gauge data were used as the primary input to a hydrological model, Rainfall-Runoff-Inundation (RRI) and the simulated flood level and runoff were compared with the observed data using statistical metrics. GSMaP showed the best performance in simulating hourly runoff with the lowest relative bias (RB) and the highest Nash-Sutcliffe efficiency (NSE) of 4.9% and 0.79, respectively. Meanwhile, the rain gauge data was able to produce runoff with −12.2% and 0.71 for RB and NSE, respectively. The other three SRPs showed acceptable results in daily discharge simulation (NSE value between 0.42 and 0.49, and RB value between −23.3% and −31.2%). The generated flood map also agreed with the published information. In general, the SRPs, particularly the GSMaP, showed their ability to support rapid flood forecasting required for early warning of floods. Full article
Show Figures

Graphical abstract

Back to TopTop