Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Sanshandao gold deposit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6467 KiB  
Article
Integrated Geophysical Signatures of the Jiaodong Region in China and Their Implications for Deep Architecture and Gold Metallogenic Systems
by Haiyang Kuang, Jiayong Yan, Kun Zhang, Wenlong Tang, Chao Fu, Jiangang Liang, Guoli Zhang and Yuexin You
Minerals 2025, 15(4), 417; https://doi.org/10.3390/min15040417 - 17 Apr 2025
Cited by 1 | Viewed by 481
Abstract
The Jiaodong region ranks as the world’s third-largest gold metallogenic province, where Late Mesozoic gold mineralization exhibits close genetic connections with cratonic destruction and multi-stage plate tectonic interactions. This study systematically deciphers the deep-seated architecture and metallogenic controls through integrated analysis of gravity, [...] Read more.
The Jiaodong region ranks as the world’s third-largest gold metallogenic province, where Late Mesozoic gold mineralization exhibits close genetic connections with cratonic destruction and multi-stage plate tectonic interactions. This study systematically deciphers the deep-seated architecture and metallogenic controls through integrated analysis of gravity, aeromagnetic, and magnetotelluric datasets. The key findings demonstrate the following: (1) Bouguer gravity anomalies reveal a “two uplifts flanking a central depression” tectonic framework, reflecting superimposed effects from Yangtze Plate subduction and Pacific Plate rollback; (2) zoned aeromagnetic anomalies suggest that the Sanshandao–Jiaojia–Zhaoyuan–Pingdu Metallogenic Belt extends seaward with significant exploration potential; (3) magnetotelluric inversion identifies three lithosphere penetrating conductive zones, confirming the Jiaojia and Zhaoyuan–Pingdu faults as crust mantle fluid conduits, while the Taocun–Jimo fault marks the North China–Sulu Block boundary; and (4) metallogenic materials derive from hybrid sources of deep Yangtze Plate subduction and mantle upwelling, with gold enrichment controlled by intersections of NE-trending faults and EW-oriented basement folds. Integrated geophysical signatures indicate that the northwestern Jiaodong offshore area (north of Sanshandao) holds supergiant gold deposit potential. This research provides critical constraints for the craton destruction type gold mineralization model. Full article
Show Figures

Figure 1

19 pages, 7085 KiB  
Article
In-Situ Geochemical and Rb–Sr Dating Analysis of Sulfides from a Gold Deposit Offshore of Northern Sanshandao, Jiaodong Peninsula, North China: Implications for Gold Mineralization
by Jiepeng Tian, Jinhui Wang, Tongliang Tian, Ligong Wang, Yingpeng Wang, Xiaowei Yu, Wen Zhang, Tianlong Ren and Bin Sun
Minerals 2024, 14(5), 456; https://doi.org/10.3390/min14050456 - 26 Apr 2024
Cited by 1 | Viewed by 1427
Abstract
The gold deposit offshore of Northern Sanshandao is an ultra-large-scale gold deposit discovered in the Jiaodong ore area in recent years. This deposit is a fractured-zone altered-rock-type gold deposit; however, its ore genesis and precise mineralization processes are still highly controversial. Based on [...] Read more.
The gold deposit offshore of Northern Sanshandao is an ultra-large-scale gold deposit discovered in the Jiaodong ore area in recent years. This deposit is a fractured-zone altered-rock-type gold deposit; however, its ore genesis and precise mineralization processes are still highly controversial. Based on petrographical observation, the trace elements, sulfur isotopes, and rubidium–strontium isotopes of the gold-bearing pyrite were analyzed using LA-MC-ICP-MS to obtain the source of the ore-forming fluids and ore genesis. The results show that Au has a good positive correlation with Ag, As, and Cu. It is speculated that the As in the pyrite of the gold deposit offshore of Northern Sanshandao is in the form of As, replacing S and entering the pyrite, causing its lattice defects, and thus promoting the entry of Au+ into the gold-bearing pyrite. The Co/Ni ratios mainly range between 0.1 and 10, indicating that the mineralization process has experienced different forms of hydrothermal evolution and the mixing of different fluids. The results of the in-situ sulfur isotope analysis show that pyrite δ34S in the mineralization period is characterized by a high sulfur value. The authors of this study believe that the initial sulfur isotope composition has mantle-derived components. The large-scale, deep cutting, and high degree of fragmentation in the Sanshandao fault zone are conducive to the interaction between fluids and rocks, as well as the mixing and addition of seawater, resulting in the characteristic high δ34S value. The Sr isotopic compositions indicate a crust–mantle mixing attribute of the mineralized material source. The Rb–Sr isochron age of the pyrite is 118.5 ± 0.65 Ma, which represents the age of gold mineralization. According to the characteristics of the trace elements and sulfur isotopes, it is inferred that the gold deposit minerals offshore of Northern Sanshandao originated from deep magmatic-hydrothermal reservoirs, and the mixing of seawater and Au–As-rich hydrothermal fluids was the formation mechanism of huge amounts of gold precipitation. Full article
Show Figures

Figure 1

18 pages, 6029 KiB  
Article
A Case Study on Deformation Failure Characteristics of Overlying Strata and Critical Mining Upper Limit in Submarine Mining
by Guang Li, Zhiwen Wang, Fengshan Ma, Jie Guo, Jia Liu and Yewei Song
Water 2022, 14(16), 2465; https://doi.org/10.3390/w14162465 - 9 Aug 2022
Cited by 9 | Viewed by 2183
Abstract
Unlike land mining, the safety of seabed mining is seriously threatened by an overlying water body. In order to ensure the safety of subsea mining projects, it is of great importance to understand the failure characteristics and influencing factors of overlying strata deformation. [...] Read more.
Unlike land mining, the safety of seabed mining is seriously threatened by an overlying water body. In order to ensure the safety of subsea mining projects, it is of great importance to understand the failure characteristics and influencing factors of overlying strata deformation. Focusing on the Sanshandao Gold Mine, a typical submarine deposit in China, geomechanical model testing and numerical simulations were carried out. The results show that in the mining of a steeply dipping metal ore body, subsidence deformation mainly occurs on the hanging wall; the subsidence center is located on the surface of the hanging wall, and the uplift center is located on the upper surface of the ore body. The critical mining upper limit, which represents the minimum thickness of the reserved isolation pillar between the overlying seawater and the goaf, was determined to be 50 m in the Xinli mine; fault slip would occur if this critical value was exceeded. The dip angle and thickness of the ore body were negatively correlated with the vertical surface deformation. As the dip angle and thickness increased, the critical upper mining limit increased. When the fault was located in the footwall, the critical upper mining limit increased as the distance between the fault and the ore body increased, and the failure mode of the goaf was fault slip. When the fault was located in the hanging wall, the final failure mode of the goaf changed to a combined failure mode of overlying rock collapse as well as fault slip. These research results provide a theoretical basis for the selection of the reserved pillar height in the Xinli mining area, as well as a reference for safe mining practices under similar geological conditions. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

22 pages, 5543 KiB  
Article
A 3D Predictive Method for Deep-Seated Gold Deposits in the Northwest Jiaodong Peninsula and Predicted Results of Main Metallogenic Belts
by Mingchun Song, Shiyong Li, Jifei Zheng, Bin Wang, Jiameng Fan, Zhenliang Yang, Guijun Wen, Hongbo Liu, Chunyan He, Liangliang Zhang and Xiangdong Liu
Minerals 2022, 12(8), 935; https://doi.org/10.3390/min12080935 - 25 Jul 2022
Cited by 6 | Viewed by 2835
Abstract
With the rapid depletion of mineral resources, deep prospecting is becoming a frontier field in international geological exploration. The prediction of deep mineral resources is the premise and foundation of deep prospecting. However, conventional metallogenic predictive methods, which are mainly based on surface [...] Read more.
With the rapid depletion of mineral resources, deep prospecting is becoming a frontier field in international geological exploration. The prediction of deep mineral resources is the premise and foundation of deep prospecting. However, conventional metallogenic predictive methods, which are mainly based on surface geophysical, geochemical, and remote sensing data and geological information, are no longer suitable for deep metallogenic prediction due to the large burial depth of deep-seated deposits. Consequently, 3D metallogenic prediction becomes a critical method for delineating deep prospecting target areas. As a world-class giant gold metallogenic province, the Jiaodong Peninsula is at the forefront in China in terms of deep prospecting achievements and exploration depth. Therefore, it has unique conditions for 3D metallogenic prediction and plays an important exemplary role in promoting the development of global deep prospecting. This study briefly introduced the method, bases, and results of the 3D metallogenic prediction in the northwest Jiaodong Peninsula and then established 3D geological models of gold concentration areas in the northwest Jiaodong Peninsula using drilling combined with geophysics. Since gold deposits in the northwest Jiaodong Peninsula are often controlled by faulting in the 3D space, this study proposed a method for predicting deep prospecting target areas based on a stepped metallogenic model and a method for predicting the deep resource potential of gold deposits based on the shallow resources of ore-controlling faults. Multiple characteristic variables were extracted from the 3D geological models of the gold concentration areas, including the buffer zone and dip angle of faults, the changing rate of fault dip angle, and the equidistant distribution of orebodies. Using these characteristic variables, five deep prospecting target areas in the Jiaojia and Sanshandao faults were predicted. Moreover, based on the proven gold resources at an elevation of −2000 m and above, the total gold resources of the Sanshandao, Jiaojia, and Zhaoping ore-controlling faults at an elevation of −5000–−2000 m were predicted to be approximately 3377–6490 t of Au. Therefore, it is believed that the total gold resources in the Jiaodong Peninsula are expected to exceed 10,000 t. These new predicted results suggest that the northwest Jiaodong Peninsula has huge potential for the resources of deep gold deposits, laying the foundation for further deep prospecting. Full article
(This article belongs to the Special Issue 3D/4D Geological Modeling for Mineral Exploration)
Show Figures

Figure 1

20 pages, 4332 KiB  
Article
The Thermal and Dynamic Process of Core → Mantle → Crust and the Metallogenesis of Guojiadian Mantle Branch in Northwestern Jiaodong
by Shuyin Niu, Chao Chen, Jianzhen Zhang, Fuxiang Zhang, Fengxiang Wang and Aiqun Sun
Minerals 2019, 9(4), 249; https://doi.org/10.3390/min9040249 - 24 Apr 2019
Cited by 7 | Viewed by 3364
Abstract
The Jiaodong gold mineral province, with an overall endowment estimated as >3000 t, located at the eastern segment of the North China Craton (NCC), ranks as the greatest source of Au in China. The structural evolution, magmatic activity and metallogenesis during the Mesozoic [...] Read more.
The Jiaodong gold mineral province, with an overall endowment estimated as >3000 t, located at the eastern segment of the North China Craton (NCC), ranks as the greatest source of Au in China. The structural evolution, magmatic activity and metallogenesis during the Mesozoic played important roles in the large scale regional gold, silver and polymetallic mineralization in this area; among them, the intensive activation of fault structures is the most important factor for metallogenesis. This study takes the regional deep faults as main thread to discuss the controlling role of faults in large scale metallogenesis. The Jiaojia fault and Sanshandao faults in the northwest margin of the Guojiadian mantle branch not only are dominant migration channels for hydrothermal fluid but are very important favorable spaces for ore-forming and ore-hosting during the formation of world-class super large gold deposits in this area. The deep metallogenic process can be summarized as involving intensive Earth’s core, mantle and crust activity → magmatism → uplifting of metamorphic complex → detachment of cover rocks → formation of mantle branch → penetration of hydrothermal fluid along deep faults → concentration of metallogenic materials → formation of super large deposits. Full article
(This article belongs to the Special Issue Polymetallic Metallogenic System)
Show Figures

Figure 1

25 pages, 5960 KiB  
Article
Origin and Evolution of Ore-Forming Fluid and Gold-Deposition Processes at the Sanshandao Gold Deposit, Jiaodong Peninsula, Eastern China
by Yazhou Liu, Liqiang Yang, Sirui Wang, Xiangdong Liu, Hao Wang, Dapeng Li, Pengfei Wei, Wei Cheng and Bingyu Chen
Minerals 2019, 9(3), 189; https://doi.org/10.3390/min9030189 - 19 Mar 2019
Cited by 21 | Viewed by 5682
Abstract
The Early Cretaceous Sanshandao gold deposit, the largest deposit in the Sanshandao-Cangshang goldfield, is located in the northwestern part of the Jiaodong peninsula. It is host to Mesozoic granitoids and is controlled by the north by northeast (NNE) to northeast (NE)-trending Sanshandao-Cangshang fault. [...] Read more.
The Early Cretaceous Sanshandao gold deposit, the largest deposit in the Sanshandao-Cangshang goldfield, is located in the northwestern part of the Jiaodong peninsula. It is host to Mesozoic granitoids and is controlled by the north by northeast (NNE) to northeast (NE)-trending Sanshandao-Cangshang fault. Two gold mineralizations were identified in the deposit’s disseminated and stockwork veinlets and quartz–sulfide veins, which are typically enveloped by broad alteration selvages. Based on the cross-cutting relationships and mineralogical and textural characteristics, four stages have been identified for both styles of mineralization: Pyrite–quartz (stage 1), quartz–pyrite (stage 2), quartz–pyrite–base metal–sulfide (stage 3), and quartz–carbonate (stage 4), with gold mainly occurring in stages 2 and 3. Three types of fluid inclusion have been distinguished on the basis of fluid-inclusion assemblages in quartz and calcite from the four stages: Pure CO2 gas (type I), CO2–H2O inclusions (type II), and aqueous inclusions (type III). Early-stage (stage 1) quartz primary inclusions are only type II inclusions, with trapping at 280–400 °C and salinity at 0.35 wt %–10.4 wt % NaCl equivalent. The main mineralizing stages (stages 2 and 3) typically contain primary fluid-inclusion assemblages of all three types, which show similar phase transition temperatures and are trapped between 210 and 320 °C. The late stage (stage 4) quartz and calcite contain only type III aqueous inclusions with trapping temperatures of 150–230 °C. The δ34S values of the hydrothermal sulfides from the main stage range from 7.7‰ to 12.6‰ with an average of 10.15‰. The δ18O values of hydrothermal quartz mainly occur between 9.7‰ and 15.1‰ (mainly 10.7‰–12.5‰, average 12.4‰); calculated fluid δ18O values are from 0.97‰ to 10.79‰ with a median value of 5.5‰. The δDwater values calculated from hydrothermal sericite range from −67‰ to −48‰. Considering the fluid-inclusion compositions, δ18O and δD compositions of ore-forming fluids, and regional geological events, the most likely ultimate potential fluid and metal would have originated from dehydration and desulfidation of the subducting paleo-Pacific slab and the subsequent devolatilization of the enriched mantle wedge. Fluid immiscibility occurred during the main ore-forming stage due to pressure decrease from the early stage (165–200 MPa) to the main stage (90–175 MPa). Followed by the changing physical and chemical conditions, the metallic elements (including Au) in the fluid could no longer exist in the form of complexes and precipitated from the fluid. Water–rock sulfidation and pressure fluctuations, with associated fluid unmixing and other chemical changes, were the two main mechanisms of gold deposition. Full article
(This article belongs to the Special Issue Polymetallic Metallogenic System)
Show Figures

Figure 1

Back to TopTop