Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Salvia splendens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4554 KiB  
Article
Effect of Deficit Irrigation on Growth Parameters of the Salvia splendens L. Plant
by Işık Sezen, Sevda Yağanoğlu, Elif Akpınar Külekçi and Ayşe Karahan
Water 2023, 15(23), 4187; https://doi.org/10.3390/w15234187 - 4 Dec 2023
Cited by 2 | Viewed by 1855
Abstract
This study aims to investigate alterations in the developmental parameters of Salvia splendens L., a commonly utilized seasonal flower associated with excessive water consumption in urban green spaces, through the implementation of deficit irrigation practices. Four distinct irrigation treatments, which entailed maintaining the [...] Read more.
This study aims to investigate alterations in the developmental parameters of Salvia splendens L., a commonly utilized seasonal flower associated with excessive water consumption in urban green spaces, through the implementation of deficit irrigation practices. Four distinct irrigation treatments, which entailed maintaining the evaporation pot’s water level at 100% (control), 75%, 50%, and 25% of the pot’s water-holding capacity, were established. This study scrutinized 18 growth parameters to assess the impact of varying water application levels. The findings of this research revealed that Salvia splendens L. plants exhibited more substantial improvements in 17 out of 18 assessed parameters when subjected to 75% water application (representing a 25% reduction in water supply) in comparison to 100% water application (with no reduction). Notably, the only parameter negatively affected by reduced water availability in Salvia splendens L. was the diameter of the flowers. Thus, it is recommended to reduce water application by 25% when cultivating Salvia splendens L. in urban areas. Such a measure is expected to yield substantial water conservation benefits in urban landscaping. Consequently, it is advisable to promote the frequent utilization of Salvia splendens L. plants in urban green spaces, given their robust development even under conditions of water scarcity. Full article
(This article belongs to the Special Issue Agricultural Practices to Improve Irrigation Sustainability)
Show Figures

Figure 1

24 pages, 3826 KiB  
Article
Comparative Genomics and Phylogenetic Analysis of the Chloroplast Genomes in Three Medicinal Salvia Species for Bioexploration
by Qing Du, Heyu Yang, Jing Zeng, Zhuoer Chen, Junchen Zhou, Sihui Sun, Bin Wang and Chang Liu
Int. J. Mol. Sci. 2022, 23(20), 12080; https://doi.org/10.3390/ijms232012080 - 11 Oct 2022
Cited by 12 | Viewed by 2683
Abstract
To systematically determine their phylogenetic relationships and develop molecular markers for species discrimination of Salvia bowleyana, S. splendens, and S. officinalis, we sequenced their chloroplast genomes using the Illumina Hiseq 2500 platform. The chloroplast genomes length of S. bowleyana, [...] Read more.
To systematically determine their phylogenetic relationships and develop molecular markers for species discrimination of Salvia bowleyana, S. splendens, and S. officinalis, we sequenced their chloroplast genomes using the Illumina Hiseq 2500 platform. The chloroplast genomes length of S. bowleyana, S. splendens, and S. officinalis were 151,387 bp, 150,604 bp, and 151,163 bp, respectively. The six genes ndhB, rpl2, rpl23, rps7, rps12, and ycf2 were present in the IR regions. The chloroplast genomes of S. bowleyana, S. splendens, and S. officinalis contain 29 tandem repeats; 35, 29, 24 simple-sequence repeats, and 47, 49, 40 interspersed repeats, respectively. The three specific intergenic sequences (IGS) of rps16-trnQ-UUG, trnL-UAA-trnF-GAA, and trnM-CAU-atpE were found to discriminate the 23 Salvia species. A total of 91 intergenic spacer sequences were identified through genetic distance analysis. The two specific IGS regions (trnG-GCC-trnM-CAU and ycf3-trnS-GGA) have the highest K2p value identified in the three studied Salvia species. Furthermore, the phylogenetic tree showed that the 23 Salvia species formed a monophyletic group. Two pairs of genus-specific DNA barcode primers were found. The results will provide a solid foundation to understand the phylogenetic classification of the three Salvia species. Moreover, the specific intergenic regions can provide the probability to discriminate the Salvia species between the phenotype and the distinction of gene fragments. Full article
(This article belongs to the Special Issue Plant Genomics and Bioinformatics)
Show Figures

Figure 1

14 pages, 3227 KiB  
Article
Molecular Cloning and Functional Analysis of IrUGT86A1-like Gene in Medicinal Plant Isodon rubescens (Hemsl.) Hara
by Conglong Lian, Jinxu Lan, Bao Zhang, Hao Yang, Kaihua Guo, Jingjing Li and Suiqing Chen
Life 2022, 12(9), 1334; https://doi.org/10.3390/life12091334 - 28 Aug 2022
Cited by 2 | Viewed by 2172
Abstract
The synthesis of secondary metabolites in plants often includes glycosylation modifications. Often, the final step of constructing plant secondary metabolites is completed by glycosylation transferases, which are also involved in many cell processes. In this study, a UDP-glycosyltransferase gene (UGT) was [...] Read more.
The synthesis of secondary metabolites in plants often includes glycosylation modifications. Often, the final step of constructing plant secondary metabolites is completed by glycosylation transferases, which are also involved in many cell processes. In this study, a UDP-glycosyltransferase gene (UGT) was amplified from Isodon rubescens (Hemsl.) Hara with RT-PCR and named IrUGT86A1-like (GenBank: MZ913258). Here, we found that IrUGT86A1-like gene is 1450 bp in length and encodes for 479 amino acids. Bioinformatics analysis revealed that IrUGT86A1-like is a stable and hydrophilic protein, located in the cytoplasm with a transmembrane domain. Phylogenetic analysis showed that IrUGT86A1-like protein has the closest genetic relationship with the UDP-glycosyltransferase 86A1-like protein (XP_042054241.1) of Salvia splendens. RT-qPCR analysis demonstrated that the expression of IrUGT86A1-like gene varied in different tissues; leaves had the highest expression followed by flowers, stems, and roots had the lowest expression. This expression trend is similar to the distribution of oridonin content in different tissues of I. rubescens. Additionally, IrUGT86A1-like gene was found to be positively enhanced by NaCl and MeJA treatment, and in contrast was down-regulated by ABA treatment. Finally, the prokaryotic expression vector pEASY®-Blunt E1-IrUGT86A1 was successfully used to express about 53 KD of IrUGT86A1-like protein. This research builds a foundation for further investigation on the function of this gene in the synthesis and modification of secondary metabolites. Full article
Show Figures

Figure 1

17 pages, 3502 KiB  
Article
Alleviation of Ammonium Toxicity in Salvia splendens ‘Vista Red’ with Silicon Supplementation
by Jinnan Song, Jingli Yang and Byoung Ryong Jeong
Toxics 2022, 10(8), 446; https://doi.org/10.3390/toxics10080446 - 3 Aug 2022
Cited by 12 | Viewed by 2890
Abstract
Ammonium (NH4+) toxicity seriously hampers the yield and quality of salvia plants because most varieties or sub-species are highly sensitive to NH4+. Silicon (Si) is an alternative that is used to minimize these disturbances and maintain better [...] Read more.
Ammonium (NH4+) toxicity seriously hampers the yield and quality of salvia plants because most varieties or sub-species are highly sensitive to NH4+. Silicon (Si) is an alternative that is used to minimize these disturbances and maintain better growth under NH4+ toxicity. Nevertheless, the mitigatory effects of Si on NH4+-stressed salvia are unknown. Therefore, this study was carried out to determine how Si assists to alleviate the NH4+ toxicity degree in salvia. To this end, salvia plants were cultivated in a controlled environment supplied with a constant N (nitrogen) level (13 meq·L−1) in the form of three NH4+:NO3 ratios (0:100, 50:50, 100:0), each with (1.0 meq·L−1) or without Si. Physiological disorders and typical NH4+ toxicity symptoms, as well as interrupted photosynthesis, were observed in the 100% NH4+-treated plants. Furthermore, cation uptake inhibition and oxidative damage were also imposed by the 100% NH4+ supply. In contrast, in the presence of Si, the NH4+ toxicity degree was attenuated and plant growth was ensured. Accordingly, the NH4+ toxicity appearance ratio decreased significantly. Furthermore, Si-treated plants showed an ameliorated photosynthetic ability, elevated internal K and Ca levels, and enhanced antioxidative capacity, as reflected by improved major antioxidant enzyme activities, as well as diminished accumulation of ROS (reactive oxygen species) and MDA (malondialdehyde). Our findings enlightened the agronomic importance of additional Si to nutrient solutions, especially pertaining to bedding plants at risk of NH4+ toxicity. Full article
(This article belongs to the Special Issue Heavy Metal Toxicity Effects on Plants)
Show Figures

Figure 1

10 pages, 1800 KiB  
Communication
Effects of Depolymerized Gellan with Different Molecular Weights on the Growth of Four Bedding Plant Species
by Piotr Salachna
Agronomy 2020, 10(2), 169; https://doi.org/10.3390/agronomy10020169 - 24 Jan 2020
Cited by 7 | Viewed by 3056
Abstract
New solutions allowing for the shortening of the growing cycle and improvements in plant quality are constantly sought in order to improve the efficiency of bedding plant production under covers. Biodegradable polysaccharides and their derivatives have become increasingly popular in horticulture as plant [...] Read more.
New solutions allowing for the shortening of the growing cycle and improvements in plant quality are constantly sought in order to improve the efficiency of bedding plant production under covers. Biodegradable polysaccharides and their derivatives have become increasingly popular in horticulture as plant growth promoters. A greenhouse pot experiment was conducted to evaluate the effects of depolymerized gellan of different molecular weights (MW 56 kDa and 77 kDa) on the growth and physiological parameters of ornamental bedding plants Rudbeckia hirta L., Salvia splendens Sellow ex J.A. Schultes, Scabiosa atropurpurea L., and Tithonia rotundifolia (Mill.) S.F. Blake. The results showed that the application of depolymerized gellan accelerated flowering and stimulated the growth of all assessed species, regardless of MW. The plants treated with depolymerized gellan grew higher and had greater fresh weight of their above-ground parts, higher leaf relative chlorophyll content (SPAD; soil and plant analysis development), and higher stomatal conductance (gs). The use of 56 kDa gellan fraction resulted in the formation of inflorescences with the greatest fresh weight in S. atropurpurea. Leaves of R. hirta treated with this fraction showed the highest values of SPAD and gs. This study demonstrated that gellan derivatives of low MW may be used for the production of innovative plant biostimulants. Full article
Show Figures

Figure 1

Back to TopTop