Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Salar de Uyuni

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6915 KiB  
Article
Framework for Remote Sensing and Modelling of Lithium-Brine Deposit Formation
by Cristian Rossi, Luke Bateson, Maral Bayaraa, Andrew Butcher, Jonathan Ford and Andrew Hughes
Remote Sens. 2022, 14(6), 1383; https://doi.org/10.3390/rs14061383 - 12 Mar 2022
Cited by 12 | Viewed by 8085
Abstract
The demand for “green” metals such as lithium is increasing as the world works to reduce its reliance on fossil fuels. More than half of the world’s lithium resources are contained in lithium-brine deposits, including the salt flats, or “salars”, of the Andean [...] Read more.
The demand for “green” metals such as lithium is increasing as the world works to reduce its reliance on fossil fuels. More than half of the world’s lithium resources are contained in lithium-brine deposits, including the salt flats, or “salars”, of the Andean region of South America, also known as the Lithium Triangle. The genesis of lithium-brine deposits is largely driven by the leaching of lithium from source rocks in watersheds, transport via groundwater systems to salars, and evaporative concentration in salars. The goal of this research is to create a consistent and seamless methodology for tracking lithium mass from its source in the watershed to its greatest concentration in the nucleus. The area of interest is in and around Bolivia’s Salar de Uyuni, the world’s largest salt flat. We explore how Li-brine deposits form, where the water and solute come from, how the brines are formed, and how abstraction affects the mass balance inside the salar. To support the entire system, open-source Earth observation (EO) data are analysed. We found that by constructing a flexible and repeatable workflow, the question of how lithium reaches the Salar de Uyuni can be addressed. The work demonstrated the importance of groundwater flow to the river network and highlighted the need for flow data for the main river supplying the salar with both water inflow and lithium mass. Full article
(This article belongs to the Special Issue New Trends on Remote Sensing Applications to Mineral Deposits)
Show Figures

Figure 1

22 pages, 2320 KiB  
Article
Production of Exopolysaccharides by Cultivation of Halotolerant Bacillus atrophaeus BU4 in Glucose- and Xylose-Based Synthetic Media and in Hydrolysates of Quinoa Stalks
by Diego Chambi, Jenny Lundqvist, Erik Nygren, Luis Romero-Soto, Katherine Marin, András Gorzsás, Mattias Hedenström, Markus Carlborg, Markus Broström, Ola Sundman, Cristhian Carrasco, Leif J. Jönsson and Carlos Martín
Fermentation 2022, 8(2), 79; https://doi.org/10.3390/fermentation8020079 - 14 Feb 2022
Cited by 7 | Viewed by 5043
Abstract
A halotolerant, exopolysaccharide-producing bacterium isolated from the Salar de Uyuni salt flat in Bolivia was identified as Bacillus atrophaeus using next-generation sequencing. Comparisons indicate that the genome most likely (p-value: 0.0024) belongs to a subspecies previously not represented in the database. [...] Read more.
A halotolerant, exopolysaccharide-producing bacterium isolated from the Salar de Uyuni salt flat in Bolivia was identified as Bacillus atrophaeus using next-generation sequencing. Comparisons indicate that the genome most likely (p-value: 0.0024) belongs to a subspecies previously not represented in the database. The growth of the bacterial strain and its ability to produce exopolysaccharides (EPS) in synthetic media with glucose or xylose as carbon sources, and in hydrolysates of quinoa stalks, was investigated. The strain grew well in all synthetic media, but the growth in glucose was better than that in xylose. Sugar consumption was better when initial concentrations were low. The growth was good in enzymatically produced cellulosic hydrolysates but was inhibited in hemicellulosic hydrolysates produced using hydrothermal pretreatment. The EPS yields were up to 0.064 g/g on initial glucose and 0.047 g/g on initial xylose, and was higher in media with relatively low sugar concentrations. The EPS was isolated and purified by a sequential procedure including centrifugation, cold ethanol precipitation, trichloroacetic acid treatment, dialysis, and freeze-drying. Glucose and mannose were the main sugars identified in hydrolyzed EPS. The EPS was characterized by size-exclusion chromatography, Fourier-transform infrared (FTIR) spectroscopy, heteronuclear single-quantum coherence nuclear magnetic resonance (HSQC NMR) spectroscopy, scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis. No major differences were elucidated between EPS resulting from cultivations in glucose- or-xylose-based synthetic media, while some divergences with regard to molecular-weight averages and FTIR and HSQC NMR spectra were detected for EPS from hydrolysate-based media. Full article
(This article belongs to the Special Issue Food Wastes: Feedstock for Value-Added Products: 3rd Edition)
Show Figures

Figure 1

16 pages, 2741 KiB  
Article
Exopolysaccharides Production by Cultivating a Bacterial Isolate from the Hypersaline Environment of Salar de Uyuni (Bolivia) in Pretreatment Liquids of Steam-Exploded Quinoa Stalks and Enzymatic Hydrolysates of Curupaú Sawdust
by Diego Chambi, Luis Romero-Soto, Roxana Villca, Felipe Orozco-Gutiérrez, José Vega-Baudrit, Jorge Quillaguamán, Rajni Hatti-Kaul, Carlos Martín and Cristhian Carrasco
Fermentation 2021, 7(1), 33; https://doi.org/10.3390/fermentation7010033 - 28 Feb 2021
Cited by 32 | Viewed by 5707
Abstract
The halotolerant bacterial strain BU-4, isolated from a hypersaline environment, was identified as an exopolysaccharide (EPS) producer. Pretreatment liquids of steam-exploded quinoa stalks and enzymatic hydrolysates of Curupaú sawdust were evaluated as carbon sources for EPS production with the BU-4 strain, and the [...] Read more.
The halotolerant bacterial strain BU-4, isolated from a hypersaline environment, was identified as an exopolysaccharide (EPS) producer. Pretreatment liquids of steam-exploded quinoa stalks and enzymatic hydrolysates of Curupaú sawdust were evaluated as carbon sources for EPS production with the BU-4 strain, and the produced EPS was characterized using FTIR, TGA, and SEM. Cultivation was performed at 30 °C for 48 h, and the cells were separated from the culture broth by centrifugation. EPS was isolated from the cell pellets by ethanol precipitation, and purified by trichloroacetic acid treatment, followed by centrifugation, dialysis, and freeze-drying. EPS production from quinoa stalks- and Curupaú sawdust-based substrates was 2.73 and 0.89 g L−1, respectively, while 2.34 g L−1 was produced when cultivation was performed on glucose. FTIR analysis of the EPS revealed signals typical for polysaccharides, as well as ester carbonyl groups and sulfate groups. High thermal stability, water retention capacity and gel-forming ability were inferred from SEM and TGA. The capability of the halotolerant isolate for producing EPS from pretreatment liquids and hydrolysates was demonstrated, and characterization of the EPS revealed their broad application potential. The study shows a way for producing value-added products from waste materials using a bacterium from a unique Bolivian ecosystem. Full article
(This article belongs to the Special Issue Food Wastes: Feedstock for Value-Added Products: 2nd Edition)
Show Figures

Figure 1

32 pages, 6934 KiB  
Article
UAV Imaging of a Martian Brine Analogue Environment in a Fluvio-Aeolian Setting
by Anshuman Bhardwaj, Lydia Sam, F. Javier Martín-Torres, María-Paz Zorzano and Juan Antonio Ramírez Luque
Remote Sens. 2019, 11(18), 2104; https://doi.org/10.3390/rs11182104 - 9 Sep 2019
Cited by 10 | Viewed by 4615
Abstract
Understanding extraterrestrial environments and landforms through remote sensing and terrestrial analogy has gained momentum in recent years due to advances in remote sensing platforms, sensors, and computing efficiency. The seasonal brines of the largest salt plateau on Earth in Salar de Uyuni (Bolivian [...] Read more.
Understanding extraterrestrial environments and landforms through remote sensing and terrestrial analogy has gained momentum in recent years due to advances in remote sensing platforms, sensors, and computing efficiency. The seasonal brines of the largest salt plateau on Earth in Salar de Uyuni (Bolivian Altiplano) have been inadequately studied for their localized hydrodynamics and the regolith volume transport across the freshwater-brine mixing zones. These brines have recently been projected as a new analogue site for the proposed Martian brines, such as recurring slope lineae (RSL) and slope streaks. The Martian brines have been postulated to be the result of ongoing deliquescence-based salt-hydrology processes on contemporary Mars, similar to the studied Salar de Uyuni brines. As part of a field-site campaign during the cold and dry season in the latter half of August 2017, we deployed an unmanned aerial vehicle (UAV) at two sites of the Salar de Uyuni to perform detailed terrain mapping and geomorphometry. We generated high-resolution (2 cm/pixel) photogrammetric digital elevation models (DEMs) for observing and quantifying short-term terrain changes within the brines and their surroundings. The achieved co-registration for the temporal DEMs was considerably high, from which precise inferences regarding the terrain dynamics were derived. The observed average rate of bottom surface elevation change for brines was ~1.02 mm/day, with localized signs of erosion and deposition. Additionally, we observed short-term changes in the adjacent geomorphology and salt cracks. We conclude that the transferred regolith volume via such brines can be extremely low, well within the resolution limits of the remote sensors that are currently orbiting Mars, thereby making it difficult to resolve the topographic relief and terrain perturbations that are produced by such flows on Mars. Thus, the absence of observable erosion and deposition features within or around most of the proposed Martian RSL and slope streaks cannot be used to dismiss the possibility of fluidized flow within these features. Full article
(This article belongs to the Special Issue Remote Sensing in Support of Aeolian Research)
Show Figures

Graphical abstract

19 pages, 5243 KiB  
Article
Applying Independent Component Analysis on Sentinel-2 Imagery to Characterize Geomorphological Responses to an Extreme Flood Event near the Non-Vegetated Río Colorado Terminus, Salar de Uyuni, Bolivia
by Jiaguang Li, Xiucheng Yang, Carmine Maffei, Stephen Tooth and Guangqing Yao
Remote Sens. 2018, 10(5), 725; https://doi.org/10.3390/rs10050725 - 8 May 2018
Cited by 35 | Viewed by 6933
Abstract
In some internally-draining dryland basins, ephemeral river systems terminate at the margins of playas. Extreme floods can exert significant geomorphological impacts on the lower reaches of these river systems and the playas, including causing changes to flood extent, channel-floodplain morphology, and sediment dispersal. [...] Read more.
In some internally-draining dryland basins, ephemeral river systems terminate at the margins of playas. Extreme floods can exert significant geomorphological impacts on the lower reaches of these river systems and the playas, including causing changes to flood extent, channel-floodplain morphology, and sediment dispersal. However, the characterization of these impacts using remote sensing approaches has been challenging owing to variable vegetation and cloud cover, as well as the commonly limited spatial and temporal resolution of data. Here, we use Sentinel-2 Multispectral Instrument (MSI) data to investigate the flood extent, flood patterns and channel-floodplain morphodynamics resulting from an extreme flood near the non-vegetated terminus of the Río Colorado, located at the margins of the world’s largest playa (Salar de Uyuni, Bolivia). Daily maximum precipitation frequency analysis based on a 42-year record of daily precipitation data (1976 through 2017) indicates that an approximately 40-year precipitation event (40.7 mm) occurred on 6 January 2017, and this was associated with an extreme flood. Sentinel-2 data acquired after this extreme flood were used to separate water bodies and land, first by using modified normalized difference water index (MNDWI), and then by subsequently applying independent component analysis (ICA) on the land section of the combined pre- and post-flood images to extract flooding areas. The area around the Río Colorado terminus system was classified into three categories: water bodies, wet land, and dry land. The results are in agreement with visual assessment, with an overall accuracy of 96% and Kappa of 0.9 for water-land classification and an overall accuracy of 83% and Kappa of 0.65 for dry land-wet land classification. The flood extent mapping revealed preferential overbank flow paths on the floodplain, which were closely related to geomorphological changes. Changes included the formation and enlargement of crevasse splays, channel avulsion, and the development of erosion cells (floodplain scour-transport-fill features). These changes were visualized by Sentinel-2 images along with WorldView satellite images. In particular, flooding enlarged existing crevasse splays and formed new ones, while channel avulsion occurred near the river’s terminus. Greater overbank flow on the floodplain led to rapid erosion cell development, with changes to channelized sections occurring as a result of adjustments in flow sources and intensity combined with the lack of vegetation on the fine-grained (predominantly silt, clay) sediments. This study has demonstrated how ICA can be implemented on Sentinel-2 imagery to characterize the impact of extreme floods on the lower Río Colorado, and the method has potential application in similar contexts in many other drylands. Full article
(This article belongs to the Special Issue Remote Sensing for Flood Mapping and Monitoring of Flood Dynamics)
Show Figures

Graphical abstract

21 pages, 9066 KiB  
Article
Non-Vegetated Playa Morphodynamics Using Multi-Temporal Landsat Imagery in a Semi-Arid Endorheic Basin: Salar de Uyuni, Bolivia
by Jiaguang Li, Massimo Menenti, Alijafar Mousivand and Stefan M. Luthi
Remote Sens. 2014, 6(10), 10131-10151; https://doi.org/10.3390/rs61010131 - 22 Oct 2014
Cited by 22 | Viewed by 7275
Abstract
Playas in endorheic basins are of environmental value and highly scientific because of their natural habitats of a wide variety of species and indicators for climatic changes and tectonic activities within continents. Remote sensing, due to its capability of acquiring repetitive data with [...] Read more.
Playas in endorheic basins are of environmental value and highly scientific because of their natural habitats of a wide variety of species and indicators for climatic changes and tectonic activities within continents. Remote sensing, due to its capability of acquiring repetitive data with synoptic coverage, provides a unique tool to monitor and collect spatial information about playas. Most studies have concentrated on evaporite mineral distribution using remote sensing techniques but research about grain size distribution and geomorphologic changes in playas has been rarely reported. We analysed playa morphodynamics using Landsat time series data in a semi-arid endorheic basin, Salar de Uyuni in Bolivia. The spectral libraries explaining the relationship between surface reflectance and surficial materials are extracted from the Landsat image on 11 November 2012, the collected samples in the area and the precipitation data. Such spectral libraries are then applied to the classification of the other Landsat images from 1985–2011 using maximum likelihood classifier. Four types of surficial materials on the playa are identified: salty surface, silt-rich surface, clay-rich surface and pure salt. The silt-rich surface is related to crevasse splays and river banks while the clay-rich surface is associated with floodplain and channel depressions. The classification results show that the silt-rich surface tends to have a positive relationship with annual precipitation, whereas the salty surface negatively correlates with annual precipitation and there is no correlation between clay-rich surface and annual precipitation. Salty surfaces seem to consist primarily of clay due to their similar characteristics in response to precipitation changes. The classification results also show the development of a crevasse splay and avulsions. The results demonstrate the potential of Landsat imagery to determine the grain size and sedimentary facies distribution on playas in endorheic basins. Full article
Show Figures

Back to TopTop