Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = SPECFEM2D

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 11455 KB  
Article
Simulation of Seismoelectric Waves Using Time-Domain Finite-Element Method in 2D PSVTM Mode
by Jun Li, Changchun Yin, Yunhe Liu, Luyuan Wang and Xinpeng Ma
Remote Sens. 2023, 15(13), 3321; https://doi.org/10.3390/rs15133321 - 29 Jun 2023
Cited by 1 | Viewed by 1775
Abstract
The study of the numerical simulation of seismoelectric effects is very helpful for understanding the theory and mechanism of seismoelectric activities. Quasi-static approximation is widely used in the numerical simulation of seismoelectric fields. However, numerical errors occur when the model domain is not [...] Read more.
The study of the numerical simulation of seismoelectric effects is very helpful for understanding the theory and mechanism of seismoelectric activities. Quasi-static approximation is widely used in the numerical simulation of seismoelectric fields. However, numerical errors occur when the model domain is not within the near-field area of EM waves or the medium is of high salinity. To solve this problem, we propose a time-domain finite-element algorithm (FETD) based on the full-wave electromagnetic (EM) equation to simulate seismoelectric waves in 2D PSVTM mode. By decomposing the electrokinetic coupling equations into two independent ones, we can solve the seismoelectric waves separately. In our implementation, we focus our attention on the solution of EM waves based on vector–scalar potentials, while using the open-source code SPECFEM2D to explicitly solve Biot’s equations and obtain the relative fluid–solid displacement, which is taken as the source for the complete Maxwell’s equations. In the solution of EM wave fields, we use an unconditionally stable implicit method for time discretization. Computation efficiency can be improved by combining explicit and implicit recursions. After conducting the mathematical formulation, we first validate our method by comparing its results with the analytic solutions for a half-space and a two-layer model, as well as with a quasi-static approximation method. Moreover, we run numerical simulations and wavefield analyses on an elliptical hydrocarbon reservoir, and reveal that the interface responses are promising for the identification of underground interfaces and hydrocarbon reservoir exploration. Full article
(This article belongs to the Special Issue Multi-Scale Remote Sensed Imagery for Mineral Exploration)
Show Figures

Graphical abstract

15 pages, 3562 KB  
Article
Simulation of Fluid Dynamics Monitoring Using Ultrasonic Measurements
by Masaru Nagaso, Joseph Moysan, Christian Lhuillier and Jean-Philippe Jeannot
Appl. Sci. 2021, 11(15), 7065; https://doi.org/10.3390/app11157065 - 30 Jul 2021
Cited by 1 | Viewed by 3018
Abstract
The simulation of the propagation of ultrasonic waves in a moving fluid will improve the efficiency of the ultrasonic flow monitoring and that of the in-service monitoring for various reactors in several industries. The most recent simulations are mostly limited to 3D representations [...] Read more.
The simulation of the propagation of ultrasonic waves in a moving fluid will improve the efficiency of the ultrasonic flow monitoring and that of the in-service monitoring for various reactors in several industries. The most recent simulations are mostly limited to 3D representations of the insonified volume but without really considering the temporal aspect of the flow. The advent of high-performance computing (HPC) now makes it possible to propose the first 4D simulations, with the representation of the inspected medium evolving over time. This work is based on a highly accurate double simulation. A first computational fluid dynamics (CFD) simulation, performed in previous work, described the fluid medium resulting from the mixing of hot jets in a cold opaque fluid. There have been many sensor developments over the years in this domain, as ultrasounds are the only method able to give information in an opaque medium. The correct design of these sensors, as well as the precise and confident analysis of their measurements, will progress with the development of the modeling of wave propagation in such a medium. An important parameter to consider is the flow temperature description, as a temperature gradient in the medium deflects the wave path and may sometimes cause its division. We develop a 4D wave propagation simulation in a very realistic, temporally fluctuating medium. A high-performance simulation is proposed in this work to include an ultrasonic source within the medium and to calculate the wave propagation between a transmitter and a receiver. The analysis of the wave variations shows that this through-transmission setup can track the jet mixing time variations. The steps needed to achieve these results are described using the spectral-element-based numerical tool SPECFEM3D. It is shown that the low-frequency fluctuation of the liquid metal flow can be observed using ultrasonic measurements. Full article
(This article belongs to the Special Issue Ultrasonic Modelling for Non-destructive Testing)
Show Figures

Figure 1

25 pages, 11266 KB  
Article
Basin Resonance and Seismic Hazard in Jakarta, Indonesia
by Athanasius Cipta, Phil Cummins, Masyhur Irsyam and Sri Hidayati
Geosciences 2018, 8(4), 128; https://doi.org/10.3390/geosciences8040128 - 7 Apr 2018
Cited by 31 | Viewed by 11018
Abstract
We use earthquake ground motion modelling via Ground Motion Prediction Equations (GMPEs) and numerical simulation of seismic waves to consider the effects of site amplification and basin resonance in Jakarta, the capital city of Indonesia. While spectral accelerations at short periods are sensitive [...] Read more.
We use earthquake ground motion modelling via Ground Motion Prediction Equations (GMPEs) and numerical simulation of seismic waves to consider the effects of site amplification and basin resonance in Jakarta, the capital city of Indonesia. While spectral accelerations at short periods are sensitive to near-surface conditions (i.e., V S 30 , average shear-wave velocity at topmost 30 m of soil), our results suggest that, for basins as deep as Jakarta’s, available GMPEs cannot be relied on to accurately estimate the effect of basin depth on ground motions at long periods (>3 s). Amplitudes at such long periods are influenced by trapping of seismic waves in the basin, resulting in longer duration of strong ground motion, and interference between incoming and reflected waves as well as focusing at basin edges may amplify seismic waves. In order to simulate such phenomena in detail, a basin model derived from a previous study is used as a computational domain for deterministic earthquake scenario modeling in a 2-dimensional cross-section. A M w 9.0 megathrust, a M w 6.5 crustal thrust and a M w 7.0 intraslab earthquake are chosen as scenario events that pose credible threats to Jakarta, and the interactions with the basin of seismic waves generated by these events were simulated. The highest long-period PGVs amplifications are recorded at sites near the middle of the basin and near its southern edge, with maximum amplifications of PGV in the horizontal component of 726% for the crustal, 1500% for the megathrust and 1125% for the deep intraslab earthquake scenario, respectively. We find that the levels of response spectral acceleration fall below those of the 2012 Indonesian building Codes’s design response spectra for short periods (<1 s), but closely approach or may even exceed these levels for longer periods. Full article
Show Figures

Graphical abstract

Back to TopTop