Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = SLA polymorphism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1890 KB  
Review
Identification of T-Cell Epitopes and Vaccine Development for African Swine Fever Virus
by Wanyi Ni, Hanchun Yang and Nianzhi Zhang
Vaccines 2025, 13(9), 955; https://doi.org/10.3390/vaccines13090955 - 7 Sep 2025
Viewed by 1878
Abstract
African swine fever virus (ASFV) has inflicted severe devastation on the global pig industry, yet a globally approved vaccine remains unavailable. Given that cellular immunity is critical for ASFV prevention, the development of vaccines based on T-cell epitopes emerges as a promising strategy [...] Read more.
African swine fever virus (ASFV) has inflicted severe devastation on the global pig industry, yet a globally approved vaccine remains unavailable. Given that cellular immunity is critical for ASFV prevention, the development of vaccines based on T-cell epitopes emerges as a promising strategy to control this virus. This review synthesizes the recent advancements and challenges in the research on ASFV T-cell epitopes, while offering insights into the potential impact of novel T-cell epitope-based vaccines. Notably, only a limited number of ASFV T-cell epitopes have been experimentally identified to date, covering fewer than 20 ASFV proteins. This bottleneck is attributed to challenges such as high swine leukocyte antigen (SLA) polymorphism, suboptimal accuracy of predicting tools, and complex experimental validation procedures. Although current studies on ASFV-specific T-cell immune responses and epitope identification are insufficient to meet vaccine development needs, continuous progress in T-cell immunology research in recent years has brought this goal closer to reality. Full article
(This article belongs to the Special Issue African Swine Fever Virus Vaccine Development)
Show Figures

Figure 1

9 pages, 894 KB  
Article
Wild Boar (Sus scrofa)—Fascioloides magna Interaction from the Perspective of the MHC Genes
by Dean Konjević, Vlatka Erman, Miljenko Bujanić, Ida Svetličić, Haidi Arbanasić, Snježana Lubura Strunjak and Ana Galov
Pathogens 2022, 11(11), 1359; https://doi.org/10.3390/pathogens11111359 - 16 Nov 2022
Cited by 2 | Viewed by 2384
Abstract
Fascioloidosis is a parasitic disease caused by a trematode Fascioloides magna. Since major histocompatibility complex (MHC) genes play an important role in the immune response, the aim of this study was to compare the potential differences in MHC class II SLA-DRB1 exon [...] Read more.
Fascioloidosis is a parasitic disease caused by a trematode Fascioloides magna. Since major histocompatibility complex (MHC) genes play an important role in the immune response, the aim of this study was to compare the potential differences in MHC class II SLA-DRB1 exon 2 genes between wild boar populations from infected (cases) and non-infected areas (controls). During the winter of 2021, a total of 136 wild boar tissue samples were collected, 39 cases and 97 controls. DNA was extracted and sequenced using the Illumina platform. Differences in distributions of allele combinations were calculated using the Chi-Square test for homogeneity and between proportions using the large-sample test and Fisher–Irwin test. Analysis revealed 19 previously described swine leucocyte antigen (SLA) alleles. The number of polymorphic sites was 79 (29.6%), with 99 mutations in total. Nucleotide diversity π was estimated at 0.11. Proportions of the alleles SLA-DRB1*12:05 (p = 0.0008379) and SLA-DRB1*0101 (p = 0.0002825) were statistically significantly higher in controls, and proportions of the SLA-DRB1*0602 (p = 0.006059) and SLA-DRB1*0901 (p = 0.0006601) in cases. Alleles SLA-DRB1*04:09, SLA-DRB1*0501, SLA-DRB1*11:09, and SLA-DRB1*1301 were detected only in cases, while SLA-DRB1*0404, SLA-DRB1*0701, SLA-DRB1*02:10, and SLA-DRB1*04:08 were present only in controls. We did not confirm the existence of specific alleles that could be linked to F. magna infection. Detected high variability of the MHC class II SLA-DRB1 exon 2 genes indicate high resistance potential against various pathogens. Full article
(This article belongs to the Special Issue Wildlife Hosts Pathogen Interaction)
Show Figures

Figure 1

26 pages, 39658 KB  
Article
Comparative Analysis of SLA-1, SLA-2, and DQB1 Genetic Diversity in Locally-Adapted Kenyan Pigs and Their Wild Relatives, Warthogs
by Eunice Magoma Machuka, Anne W. Thairu Muigai, Joshua Oluoch Amimo, Jean-Baka Domelevo Entfellner, Isaac Lekolool, Edward Okoth Abworo and Roger Pelle
Vet. Sci. 2021, 8(9), 180; https://doi.org/10.3390/vetsci8090180 - 2 Sep 2021
Cited by 4 | Viewed by 7167
Abstract
Swine leukocyte antigen (SLA) plays a central role in controlling the immune response by discriminating self and foreign antigens and initiating an immune response. Studies on SLA polymorphism have demonstrated associations between SLA allelic variants, immune response, and disease resistance. The SLA polymorphism [...] Read more.
Swine leukocyte antigen (SLA) plays a central role in controlling the immune response by discriminating self and foreign antigens and initiating an immune response. Studies on SLA polymorphism have demonstrated associations between SLA allelic variants, immune response, and disease resistance. The SLA polymorphism is due to host-pathogen co-evolution resulting in improved adaptation to diverse environments making SLA a crucial genomic region for comparative diversity studies. Although locally-adapted African pigs have small body sizes, they possess increased resilience under harsh environmental conditions and robust immune systems with reported tolerance to some diseases, including African swine fever. However, data on the SLA diversity in these pigs are not available. We characterized the SLA of unrelated locally-adapted domestic pigs from Homa Bay, Kenya, alongside exotic pigs and warthogs. We undertook SLA comparative diversity of the functionally expressed SLA class I (SLA-1, SLA-2) and II (DQB1) repertoires in these three suids using the reverse transcription polymerase chain reaction (RT-PCR) sequence-based typing (SBT) method. Our data revealed higher genetic diversity in the locally-adapted pigs and warthogs compared to the exotic pigs. The nucleotide substitution rates were higher in the peptide-binding regions of the SLA-1, SLA-2, and DQB1 loci, indicative of adaptive evolution. We obtained high allele frequencies in the three SLA loci, including some breed-specific private alleles, which could guide breeders to increase their frequency through selection if confirmed to be associated with enhanced resilience. Our study contributes to the growing body of knowledge on genetic diversity in free-ranging animal populations in their natural environment, availing the first DQB1 gene data from locally-adapted Kenyan pigs. Full article
Show Figures

Figure 1

16 pages, 3111 KB  
Article
Association of Porcine Swine Leukocyte Antigen (SLA) Haplotypes with B- and T-Cell Immune Response to Foot-and-Mouth Disease Virus (FMDV) Peptides
by Patricia de León, Rodrigo Cañas-Arranz, Yago Saez, Mar Forner, Sira Defaus, Dolores Cuadra, María J. Bustos, Elisa Torres, David Andreu, Esther Blanco, Francisco Sobrino and Sabine E. Hammer
Vaccines 2020, 8(3), 513; https://doi.org/10.3390/vaccines8030513 - 8 Sep 2020
Cited by 12 | Viewed by 4252
Abstract
Dendrimer peptides are promising vaccine candidates against the foot-and-mouth disease virus (FMDV). Several B-cell epitope (B2T) dendrimers, harboring a major FMDV antigenic B-cell site in VP1 protein, are covalently linked to heterotypic T-cell epitopes from 3A and/or 3D proteins, and elicited [...] Read more.
Dendrimer peptides are promising vaccine candidates against the foot-and-mouth disease virus (FMDV). Several B-cell epitope (B2T) dendrimers, harboring a major FMDV antigenic B-cell site in VP1 protein, are covalently linked to heterotypic T-cell epitopes from 3A and/or 3D proteins, and elicited consistent levels of neutralizing antibodies and IFN-γ-producing cells in pigs. To address the contribution of the highly polymorphic nature of the porcine MHC (SLA, swine leukocyte antigen) on the immunogenicity of B2T dendrimers, low-resolution (Lr) haplotyping was performed. We looked for possible correlations between particular Lr haplotypes with neutralizing antibody and T-cell responses induced by B2T peptides. In this study, 63 pigs immunized with B2T dendrimers and 10 non-immunized (control) animals are analyzed. The results reveal a robust significant correlation between SLA class-II Lr haplotypes and the T-cell response. Similar correlations of T-cell response with SLA class-I Lr haplotypes, and between B-cell antibody response and SLA class-I and SLA class-II Lr haplotypes, were only found when the sample was reduced to animals with Lr haplotypes represented more than once. These results support the contribution of SLA class-II restricted T-cells to the magnitude of the T-cell response and to the antibody response evoked by the B2T dendrimers, being of potential value for peptide vaccine design against FMDV. Full article
(This article belongs to the Special Issue Evaluation of Vaccine Immunogenicity)
Show Figures

Figure 1

11 pages, 816 KB  
Article
Effect of Genetic Diversity in Swine Leukocyte Antigen-DRA Gene on Piglet Diarrhea
by Xiaoyu Huang, Qiaoli Yang, Junhu Yuan, Lixia Liu, Wenyang Sun, Yingdi Jiang, Shengguo Zhao, Shengwei Zhang, Wangzhou Huang and Shuangbao Gun
Genes 2016, 7(7), 36; https://doi.org/10.3390/genes7070036 - 15 Jul 2016
Cited by 15 | Viewed by 6023
Abstract
The swine leukocyte antigens (SLAs) are the multigene families related to immune responses. Little is known about the effect of the DRA gene on diarrheal disease. This study reported the genetic diversity of the DRA gene in exons 1, 3 and 4 in [...] Read more.
The swine leukocyte antigens (SLAs) are the multigene families related to immune responses. Little is known about the effect of the DRA gene on diarrheal disease. This study reported the genetic diversity of the DRA gene in exons 1, 3 and 4 in 290 Chinese Yantai black pigs. No variation was identified in exon 3. In exon 1, three genotypes and two alleles were identified, generated by two single nucleotide polymorphisms (SNPs). In exon 4, there were eight genotypes and five alleles containing seven SNPs were detected with four SNPs being novel SNPs. The low polymorphism found in swine DRA is consistent with the concept that the DRA gene is highly conserved among all mammalian species. Statistical analyses indicated that the genotypes of exon 1 were not significantly associated with piglet diarrhea (p > 0.05); however, genotypes C4C4 (1.80 ± 0.33) and A4E4 (1.66 ± 0.25) of exon 4 were significantly susceptible to diarrhea (p < 0.01). These indicate that the particular genotypes of the DRA gene are susceptible to diarrheal disease, which provides valuable information for disease-resistance breeding in swine. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

12 pages, 418 KB  
Article
Genome-Wide Mapping of Growth-Related Quantitative Trait Loci in Orange-Spotted Grouper (Epinephelus coioides) Using Double Digest Restriction-Site Associated DNA Sequencing (ddRADseq)
by Hui Yu, Xinxin You, Jia Li, Hankui Liu, Zining Meng, Ling Xiao, Haifa Zhang, Hao-Ran Lin, Yong Zhang and Qiong Shi
Int. J. Mol. Sci. 2016, 17(4), 501; https://doi.org/10.3390/ijms17040501 - 6 Apr 2016
Cited by 33 | Viewed by 7568
Abstract
Mapping of quantitative trait loci (QTL) is essential for the discovery of genetic structures that related to complex quantitative traits. In this study, we identified 264,072 raw SNPs (single-nucleotide polymorphisms) by double digest restriction site associated DNA sequencing (ddRADseq), and utilized 3029 of [...] Read more.
Mapping of quantitative trait loci (QTL) is essential for the discovery of genetic structures that related to complex quantitative traits. In this study, we identified 264,072 raw SNPs (single-nucleotide polymorphisms) by double digest restriction site associated DNA sequencing (ddRADseq), and utilized 3029 of these SNPs to construct a genetic linkage map in orange-spotted grouper (Epinephelus coioides) using a regression mapping algorithm. The genetic map contained 24 linkage groups (LGs) spanning a total genetic distance of 1231.98 cM. Twenty-seven significant growth-related QTLs were identified. Furthermore, we identified 17 genes (fez2, alg3, ece2, arvcf, sla27a4, sgk223, camk2, prrc2b, mchr1, sardh, pappa, syk, tert, wdrcp91, ftz-f1, mate1 and notch1) including three (tert, ftz-f1 and notch1) that have been reported to be involved in fish growth. To summarize, we mapped growth-related QTLs in the orange-spotted grouper. These QTLs will be useful in marker-assisted selection (MAS) efforts to improve growth-related traits in this economically important fish. Full article
(This article belongs to the Special Issue Fish Molecular Biology)
Show Figures

Graphical abstract

Back to TopTop