Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = SAR electronic counter-countermeasures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8720 KiB  
Article
Mitigation of Suppressive Interference in AMPC SAR Based on Digital Beamforming
by Zhipeng Xiao, Feng He, Zaoyu Sun and Zehua Zhang
Remote Sens. 2024, 16(15), 2812; https://doi.org/10.3390/rs16152812 - 31 Jul 2024
Viewed by 1236
Abstract
Multichannel Synthetic Aperture Radar (MC-SAR) systems, such as Azimuth Multi-Phase Centre (AMPC) SAR, provide an effective solution for achieving high-resolution wide-swath (HRWS) imaging by reducing the pulse repetition frequency (PRF) to increase the swath width. However, in an Electronic Countermeasures (ECM) environment, the [...] Read more.
Multichannel Synthetic Aperture Radar (MC-SAR) systems, such as Azimuth Multi-Phase Centre (AMPC) SAR, provide an effective solution for achieving high-resolution wide-swath (HRWS) imaging by reducing the pulse repetition frequency (PRF) to increase the swath width. However, in an Electronic Countermeasures (ECM) environment, the image quality of multichannel SAR systems can be significantly degraded by electromagnetic interference. Previous research into interference and counter-interference techniques has predominantly focused on single-channel SAR systems, with relatively few studies addressing the specific challenges faced by MC-SAR systems. This paper uses the classical spatial filtering technique of adaptive digital beamforming (DBF). Considering the Doppler ambiguity present in the echoes, two schemes—Interference Reconstruction And Cancellation (IRC) and Channel Grouping Nulling (CGN)—are designed to effectively eliminate suppressive interference. The IRC method eliminates the effects of interference without losing spatial degrees of freedom, ensuring effective suppression of Doppler ambiguity in subsequent processing. This method shows significant advantages under conditions of strong Doppler ambiguity and low jammer-to-signal ratio. Conversely, the CGN method mitigates the effect of interference on multichannel imaging at the expense of degrees of freedom redundant to Doppler ambiguity suppression. It shows remarkable interference suppression performance under weak-Doppler-ambiguity conditions, allowing for better image recovery. Simulations performed on point and distributed targets have validated that the proposed methods can effectively remove interfering signals and achieve high-resolution wide-swath (HRWS) SAR images. Full article
Show Figures

Figure 1

18 pages, 17976 KiB  
Article
Studies on High-Resolution Airborne Synthetic Aperture Radar Image Formation with Pseudo-Random Agility of Interpulse Waveform Parameters
by Zheng Ye, Daiyin Zhu, Shilin Niu and Jiming Lv
Remote Sens. 2024, 16(1), 164; https://doi.org/10.3390/rs16010164 - 30 Dec 2023
Cited by 3 | Viewed by 2174
Abstract
By means of alteration of the transmitted linear frequency modulation (LFM) signal waveform parameters, such as pulse width or chirp rate, initial phase, pulse repetition interval (PRI), and chirp rate polarity at every position of synthetic apertures, the pseudo-random agility technology of interpulse [...] Read more.
By means of alteration of the transmitted linear frequency modulation (LFM) signal waveform parameters, such as pulse width or chirp rate, initial phase, pulse repetition interval (PRI), and chirp rate polarity at every position of synthetic apertures, the pseudo-random agility technology of interpulse waveform parameters in airborne Synthetic Aperture Radar (SAR) actively increases the complexity and uncertainty of radar waveforms. This technology confuses jamming interception receivers, thus improving its anti-interference ability for active coherent jamming, which is one of the main research interests of airborne SAR technology. But the pseudo-random agility technology for interpulse waveform parameters faces certain challenges of large computation and complex system design, which need to be further studied and solved. To address these issues, a processing scheme of high-resolution SAR image formation which is appropriate for agile interpulse waveform parameters is proposed in this paper. This method can deal with multiple agile parameters, not only single ones as in most existing literature. Its computation load is nearly comparable to that of traditional SAR image formation with constant waveform parameters. The high-resolution SAR imaging results obtained by processing SAR raw data with agile interpulse waveform parameters demonstrate the effectiveness of the proposed method. In addition, real SAR images with resolutions of 0.5 m and 0.15 m, which are rarely found in the public literature, are shown under the circumstance of randomly changing the transmitted wideband LFM signal pulse parameters one by one. Full article
(This article belongs to the Special Issue Advances in Synthetic Aperture Radar Data Processing and Application)
Show Figures

Figure 1

23 pages, 8157 KiB  
Article
An Integrated Raw Data Simulator for Airborne Spotlight ECCM SAR
by Haemin Lee and Ki-Wan Kim
Remote Sens. 2022, 14(16), 3897; https://doi.org/10.3390/rs14163897 - 11 Aug 2022
Cited by 7 | Viewed by 2566
Abstract
Airborne synthetic aperture radar (SAR) systems often encounter the threats of interceptors or electronic countermeasures (ECM) and suffer from motion measurement errors. In order to design and analyze SAR systems while considering such threats and errors, an integrated raw data simulator is proposed [...] Read more.
Airborne synthetic aperture radar (SAR) systems often encounter the threats of interceptors or electronic countermeasures (ECM) and suffer from motion measurement errors. In order to design and analyze SAR systems while considering such threats and errors, an integrated raw data simulator is proposed for airborne spotlight electronic counter-countermeasure (ECCM) SAR. The raw data for reflected echo signals and jamming signals are generated in arbitrary waveform to achieve pulse diversity. The echo signals are simulated based on the scene model computed through the inverse polar reformatting of the reflectivity map. The reflectivity map is generated by applying a noise-like speckle to an arbitrary grayscale optical image. The received jamming signals are generated by the jamming model, and their powers are determined by the jamming equivalent sigma zero (JESZ), a newly proposed quantitative measure for designing ECCM SAR systems. The phase errors due to the inaccuracy of the navigation system are also considered in the design of the proposed simulator, as navigation sensor errors were added in the motion measurement process, with the results used for the motion compensation. The validity and usefulness of the proposed simulator is verified through the simulation of autofocus algorithms, SAR jamming, and SAR ECCM with pulse diversity. Various types of autofocus algorithms were performed through the proposed simulator and, as a result, the performance trends were identified to be similar to those of the real data from actual flight tests. The simulation results of the SAR jamming and SAR ECCM indicate that the proposed JESZ is well-defined measure for quantifying the power requirements of ECCM SAR and SAR jammers. Full article
(This article belongs to the Special Issue SAR Images Processing and Analysis)
Show Figures

Figure 1

Back to TopTop