Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = S275JR steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1865 KiB  
Article
FEA for Optimizing Design and Fabrication of Frame Structure of Elevating Work Platforms
by Antonio Berardi, Cosimo Damiano Dellisanti, Domenico Tarantino, Karine Sophie Leheche Ouette, Alessandro Leone and Antonia Tamborrino
Appl. Sci. 2025, 15(13), 7356; https://doi.org/10.3390/app15137356 - 30 Jun 2025
Viewed by 287
Abstract
This study investigated the application of Finite Element Analysis (FEA) to optimize the design and material selection for the construction of the telescopic arm of an elevating work platform (EWP) used in agricultural environments. By comparing the structural performance of four materials—Aluminum Alloy [...] Read more.
This study investigated the application of Finite Element Analysis (FEA) to optimize the design and material selection for the construction of the telescopic arm of an elevating work platform (EWP) used in agricultural environments. By comparing the structural performance of four materials—Aluminum Alloy (EN-AW 1200), Aluminum Alloy (EN-AW 2014), High-Strength Low-Alloy (HSLA) Steel Fe275JR, and HSLA Steel S700—under simulated operational conditions, this research identified the most suitable material for robust yet lightweight platforms. The results revealed that HSLA Steel S700 provides superior performance in terms of strength, low deformation, and high safety factors, making it ideal for scenarios requiring maximum durability and load-bearing capacity. Conversely, Aluminum Alloy (EN-AW 2014), while exhibiting lower strength compared with HSLA Steel S700, significantly reduces platform weight by approximately 60% and lowers the center of gravity, enhancing maneuverability and compatibility with smaller, less powerful tractors. These findings highlight the potential of FEA in optimizing EWP design by enabling precise adjustments to material selection and structural geometry. The outcomes of this research contribute to the development of safer, more efficient, and cost-effective EWPs, with a specific focus on improving productivity and safety in agricultural operations such as pruning and harvesting. Future work will explore advanced geometries and hybrid materials to further enhance the performance and versatility of these platforms. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

24 pages, 7375 KiB  
Article
Effect of Silicone Rubbers on the Properties of RDX-Based PBXs and Their Application in the Explosive Hardening of Steel
by Konrad Szydło, Agnieszka Stolarczyk, Tomasz Jarosz, Barbara Lisiecka, Sylwia Waśkiewicz, Krzysztof Lukaszkowicz, Klaudiusz Gołombek, Jakub Polis and Mateusz Polis
Materials 2025, 18(10), 2311; https://doi.org/10.3390/ma18102311 - 15 May 2025
Viewed by 435
Abstract
Modern energetic materials (EMs) have many different civil applications. One of their most promising applications in civil engineering is explosive hardening, which facilitates the fast and cost-effective improvement of mechanical properties in the treated material. In this work, we present the results of [...] Read more.
Modern energetic materials (EMs) have many different civil applications. One of their most promising applications in civil engineering is explosive hardening, which facilitates the fast and cost-effective improvement of mechanical properties in the treated material. In this work, we present the results of our investigation on the explosive hardening of S235JR Steel with PBX formulations containing silicone binders and 1,3,5-trinitro-1,3,5-triazinane (RDX). In terms of safety, the impact (5–15 J) and friction (240–360 N) sensitivity of the tested plastic-bonded explosives (PBXs) was verified, simultaneously with DSC tests, energy of activation calculations, and critical diameter measurement. The developed material, prepared with techniques similar to the anticipated working conditions, is characterized by a high detonation velocity (up to 7300 m/s), low sensitivity for mechanical factors (10 J, 288 N), and a small critical diameter (3.3 mm). The developed PBX based on a silicone binder demonstrated grain fragmentation, recrystallization, and an increase in the surface hardness of S235JR steel, which was confirmed with SEM, EBSD, microstructure analysis, and microhardness studies. Full article
Show Figures

Figure 1

15 pages, 15656 KiB  
Article
Oxidation of the Alloy Based on the Intermetallic Phase FeAl in the Temperature Range of 700–1000 °C in Air and Possibilities of Practical Application
by Janusz Cebulski, Dorota Pasek, Maria Sozańska, Magdalena Popczyk, Jadwiga Gabor and Andrzej Swinarew
Materials 2025, 18(8), 1835; https://doi.org/10.3390/ma18081835 - 16 Apr 2025
Viewed by 465
Abstract
The paper presents the results of oxidation tests on the alloy based on the intermetallic phase, Fe40Al5Cr0.2TiB, in the air at 700–1000 °C temperature. The kinetics of corrosion processes were determined, the surface condition after oxidation was assessed, and the type and morphology [...] Read more.
The paper presents the results of oxidation tests on the alloy based on the intermetallic phase, Fe40Al5Cr0.2TiB, in the air at 700–1000 °C temperature. The kinetics of corrosion processes were determined, the surface condition after oxidation was assessed, and the type and morphology of the oxides formed were determined. In addition, the paper presents the possibility of applying the technology of surfacing Fe40Al5Cr0.2TiB alloy on the surface of steel grade S235JR as a protective coating that is resistant to high temperatures. The process was carried out using the TIG method by direct current (DC). After the surfacing, the structure of the surfacing weld made of the tested material on the base of structural steel grade S235JR was determined. It was found that a protective Al2O3 oxide layer is formed on the surface of the oxidized alloy based on the intermetallic phase from the FeAl system, and the oxidation kinetics have a parabolic course. Moreover, it was found that the morphology of the oxides formed on the surface varies depending on the oxidation temperature, which clearly indicates a different mechanism of oxide layer formation. The formation of a stable α-Al2O3 oxide variety on the surface of the Fe40Al5Cr0.2TiB alloy protects the material from further corrosion, which favors the application of this alloy on structures and fittings operating at elevated temperatures. The aim of the research was to use the Fe40Al5Cr0.2TiB alloy with very good oxidation resistance as a layer overlay on ordinary quality S235JR steel. In this way, conditions were created that fundamentally changed the surface condition (structure and physicochemical properties) of the system: steel as a substrate—intermetallic phase Fe40Al5Cr0.2TiB as a surfacing layer, in order to increase resistance to high-temperature corrosion and erosion (in the environment of gases and solid impurities in gases) often occurring in corrosive environments, especially in the power industry (boilers, pipes, installation elbows) and the chemical industry (fittings). At the same time, the surfacing method used is one of the cheapest methods of changing the surface properties of the material and regenerating or repairing the native material with a material with better properties, especially for applications in high-temperature corrosion conditions. Full article
(This article belongs to the Special Issue Achievements in Foundry Materials and Technologies)
Show Figures

Figure 1

28 pages, 11874 KiB  
Article
Assessment of the Effectiveness of Protective Coatings in Preventing Steel Corrosion in the Marine Environment
by Nicoleta Bogatu, Daniela Laura Buruiana, Alina Crina Muresan, Viorica Ghisman, Anca Lupu, Laurentiu Mardare, Elena Emanuela Herbei, Vasile Basliu, Alina Ceoromila and Stefan Florescu
Polymers 2025, 17(3), 378; https://doi.org/10.3390/polym17030378 - 30 Jan 2025
Cited by 2 | Viewed by 3179
Abstract
This research aims to evaluate the effectiveness of protective coatings in preventing the corrosion of steel in the marine environment. Electrochemical tests were performed on S355JR steel immersed in natural seawater (Black Sea, Port Constanta) over a period of 22 weeks, using electrochemical [...] Read more.
This research aims to evaluate the effectiveness of protective coatings in preventing the corrosion of steel in the marine environment. Electrochemical tests were performed on S355JR steel immersed in natural seawater (Black Sea, Port Constanta) over a period of 22 weeks, using electrochemical techniques such as the evolution of the open circuit potential (OCP) and linear polarization resistance to calculate Rp and the corrosion rate (Vcorr). The investigated steel surfaces included (a) S355JR steel blasted with Al2O3, (b) S355JR steel blasted and coated with epoxy primer enriched with zinc, (c) S355JR steel blasted and coated with epoxy primer and polyurethane paint, and (d) S355JR steel blasted and subsequently coated with epoxy primer and then polyurethane paint to which kreutzonit particles had been added. The proportion of kreutzonit particles added to the polyurethane paint was 2 wt% of the total mass of the paint. Subsequently, the samples were subjected to morphological analyses and cross-sectional analysis by scanning electron microscopy (SEM), topographical characterization (roughness and microhardness), and structural assessments (FTIR and XRD), as well as an analysis of hydrophobicity (contact angle). The results of this study revealed significant differences in corrosion behavior between the different surfaces and coatings tested. Electrochemical analysis revealed that the coating with epoxy primer and polyurethane paint to which kreutzonit particles had been added provided the best corrosion protection in the marine environment during immersion. Full article
(This article belongs to the Special Issue Polymer-Based Coatings for Metallic Materials)
Show Figures

Graphical abstract

18 pages, 7128 KiB  
Article
Comparative Study of Volatile Corrosion Inhibitors in Various Electrochemical Setups
by Antonio Pelesk and Helena Otmačić Ćurković
Coatings 2025, 15(1), 94; https://doi.org/10.3390/coatings15010094 - 15 Jan 2025
Viewed by 1104
Abstract
Volatile corrosion inhibitors (VCIs) are increasingly used in closed systems affected by atmospheric corrosion. In order to achieve a satisfactory level of protection, an inhibitor must be present in a sufficient concentration that should be determined experimentally. Electrochemical measurements are indispensable in corrosion [...] Read more.
Volatile corrosion inhibitors (VCIs) are increasingly used in closed systems affected by atmospheric corrosion. In order to achieve a satisfactory level of protection, an inhibitor must be present in a sufficient concentration that should be determined experimentally. Electrochemical measurements are indispensable in corrosion studies examining the protection efficiency of corrosion inhibitors. Volatile corrosion inhibitors are often examined by electrochemical measurements conducted in a bulk of electrolyte, although they protect metal surfaces from atmospheric corrosion where a thin film of electrolyte is present. The aim of this work is to study the protection of carbon steel by two VCIs on different types of electrodes that allow electrochemical tests in a thin electrolyte film and to compare the obtained results with those obtained in a larger volume in a classical electrochemical cell. For this purpose, disc and comb-like electrodes are used. The investigations are carried out in two corrosion media simulating either a marine or urban polluted atmosphere. Studies are performed on low-carbon S235JR steel, which is typically used for crude oil tank bottoms that often suffer from atmospheric corrosion and are increasingly protected by VCIs. Two benzoate-based VCIs recommended for such application are selected for this study. Full article
Show Figures

Figure 1

22 pages, 15098 KiB  
Article
Corrosion Tendency of S235 Steel in 3.5% NaCl Solution and Drinking Water During Six Months of Exposure
by Daniela Laura Buruiană, Alina Crina Mureşan, Nicoleta Bogatu, Viorica Ghisman, Elena Emanuela Herbei and Vasile Başliu
Materials 2024, 17(23), 5979; https://doi.org/10.3390/ma17235979 - 6 Dec 2024
Cited by 1 | Viewed by 1438
Abstract
The pipeline transport industry is constantly developing due to the high efficiency, long life, varied diameters of the pipelines, but a significant problem is the corrosion that occurs because of the corrosive attack of the various environments in which the pipelines are used. [...] Read more.
The pipeline transport industry is constantly developing due to the high efficiency, long life, varied diameters of the pipelines, but a significant problem is the corrosion that occurs because of the corrosive attack of the various environments in which the pipelines are used. This study deals with the ex situ characterizations (optical microscopy, scanning electron microscopy coupled with energy dispersive X-ray analyses, X-ray diffraction analysis, roughness, and Vickers hardness analyses) and the in situ characterizations (gravimetric and electrochemical methods). Samples of steel were tested at immersion time, after 336 h, 672 h, 1344 h, 2016 h, and 4032 h of exposure to a 3.5% NaCl solution and drinking water. The corrosion rate evaluated with the gravimetric method varied between 0.036518 and 0.008993 mm/year in the 3.5% NaCl solution and 0.02834 and 0.034162 mm/year in drinking water. The electrochemical method resulted in an estimated corrosion rate range of 0.097–0.681 mm/year for the 3.5% NaCl solution, and 0.028–0.0472 mm/year for drinking water. The passivation effect, lifetime, and operating limit of the S235JR steel in the tested corrosive environments were studied. The study can provide technical support to increase the service life of S235JR steel and to predict the suitable environment reduce corrosion costs. Full article
Show Figures

Figure 1

13 pages, 5003 KiB  
Article
General Methodology for Laser Welding Finite Element Model Calibration
by Gaizka Urretavizcaya Uranga, Maialen Areitioaurtena Oiartzun, Mario Javier Cabello, Carlos Molpeceres and Miguel Morales
Processes 2024, 12(12), 2687; https://doi.org/10.3390/pr12122687 - 28 Nov 2024
Viewed by 957
Abstract
Laser welding has become increasingly popular in recent decades due to its high processing speed and minimal heat-affected zone, which contribute to extended component lifetimes. However, the adoption of this advanced technique is often hindered by a lack of skilled personnel associated with [...] Read more.
Laser welding has become increasingly popular in recent decades due to its high processing speed and minimal heat-affected zone, which contribute to extended component lifetimes. However, the adoption of this advanced technique is often hindered by a lack of skilled personnel associated with traditional welding and limited awareness of its potential. This study proposes a straightforward methodology for developing a finite element-based thermal model for laser welding, incorporating a two-step experimental calibration process. Using temperature measurements from thermocouples and data from a welding spot test, the numerical model was calibrated to optimize combinations of welding speed and power. The study focuses on S275JR structural steel, involving initial spot weld followed by a linear welding trajectory. The results demonstrate the precision of the proposed calibration approach, as numerical predictions closely align with experimental data from all three thermocouples. The findings validate the effectiveness and accuracy of this methodology, highlighting its ability to adapt spot calibration results to more complex linear welding scenarios. Moreover, the simplicity of the process ensures it is accessible and broadly applicable across different materials and welding configurations. This work offers a reliable and resource-efficient framework for laser welding process optimization in industrial applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

12 pages, 3638 KiB  
Article
Evaluation of Wear Resistance in Tungsten-Doped Diamond-like Carbon Coatings (WC/C) on Coated and Uncoated Surfaces Under Starved Oil Lubrication with R452A Refrigerant
by Kasper Górny, Monika Madej and Arkadiusz Stachowiak
Materials 2024, 17(22), 5504; https://doi.org/10.3390/ma17225504 - 12 Nov 2024
Viewed by 797
Abstract
This article assesses the potential of using a diamond-like carbon coating doped with tungsten, a-C:H:W (WC/C), on the sliding pairs of refrigeration compressors. The ability of WC/C coating to provide low wear and a low coefficient of friction was experimentally verified in a [...] Read more.
This article assesses the potential of using a diamond-like carbon coating doped with tungsten, a-C:H:W (WC/C), on the sliding pairs of refrigeration compressors. The ability of WC/C coating to provide low wear and a low coefficient of friction was experimentally verified in a specific refrigeration compressor operating environment (lubrication with oil diluted with refrigerant) and under extreme operating conditions (starved lubrication with a small amount of oil). Conditions of starved lubrication with a substance of reduced lubricity promote a temperature increase and high mechanical (friction) stresses on the surface of the sliding pairs. These situations can hinder the effective operation of WC/C coatings. Comparative wear tests were carried out for S235JR steel samples with and without WC/C coating. It was found that the samples with the WC/C coating had the lowest wear values and the lowest friction coefficients (approximately 0.06). A low coefficient of friction suggests that even a small amount of oil (one drop) is likely sufficient to achieve mixed lubrication conditions between the tested sliding surfaces and reduce material loss. The tested WC/C coating can protect sliding friction pairs in refrigeration compressors under extreme operating conditions caused by a lack of oil. Less friction reduces the need for energy to drive the refrigeration compressor. Additionally, the significance of this research is highlighted by the fact that the wear tests were conducted using R452A, a novel, eco-friendly refrigerant. Full article
(This article belongs to the Special Issue Friction and Wear of Materials Surfaces (2nd Edition))
Show Figures

Figure 1

20 pages, 10591 KiB  
Article
Study and Characterisation of Bimetallic Structure (316LSI and S275JR) Made by Hybrid CMT WAAM Process
by Alejandro Pereira, Antonio Alonso, Primo Hernández, Javier Martínez, David Alvarez and Michal Wieczorowski
Materials 2024, 17(22), 5422; https://doi.org/10.3390/ma17225422 - 6 Nov 2024
Viewed by 1392
Abstract
The main objective of this research is to conduct an experimental investigation of the bimetallic material formed by 316LSI stainless steel and S275JR structural steel, produced via hybrid wire arc additive manufacturing technology with cool metal transfer welding and machining, and with the [...] Read more.
The main objective of this research is to conduct an experimental investigation of the bimetallic material formed by 316LSI stainless steel and S275JR structural steel, produced via hybrid wire arc additive manufacturing technology with cool metal transfer welding and machining, and with the objective of being able to reduce the industrial cost of certain requirements for one of the materials. A methodological investigation has been carried out starting with welding beads of 316LSI on S275JR plates, followed by overlapping five beads and conducting final experiments with several vertical layers, with or without intermediate face milling. The results achieved optimal bead conditions for wire speeds of 4 m/min and 5 m/min at a travel speed of 400 mm/min. Overlap experiments show that the best deposition results are obtained with an overlap equal to or greater than 28%. Cooling time does not significantly influence the final geometry of the coatings. Regarding metallographic analysis, the filler material presents an austenitic columnar structure. In the base material, a bainitic structure with inferred grain refinement was detected in the heat-affected zone. An increase in hardness is observed in the heat-affected zone. In the results obtained from the tensile tests of the bimetallic material, an increase in mechanical strength and yield strength is observed in the tested specimens. Full article
(This article belongs to the Special Issue Corrosion Mechanism and Protection Technology of Metallic Materials)
Show Figures

Figure 1

18 pages, 1565 KiB  
Article
Design of an Overhead Crane in Steel, Aluminium and Composite Material Using the Prestress Method
by Luigi Solazzi and Ivan Tomasi
J. Compos. Sci. 2024, 8(9), 380; https://doi.org/10.3390/jcs8090380 - 23 Sep 2024
Cited by 1 | Viewed by 2167
Abstract
The present research describes a design of an overhead crane using different materials with a prestress method, which corresponds to an external compression force with the aim of reducing the displacement of the beam due to the external load. This study concerns a [...] Read more.
The present research describes a design of an overhead crane using different materials with a prestress method, which corresponds to an external compression force with the aim of reducing the displacement of the beam due to the external load. This study concerns a bridge crane with a span length of 10 m, with a payload equal to 20,000 N and an estimated fatigue life of 50,000 cycles. Three different materials are studied: steel S355JR, aluminium alloy 6061-T6 and carbon fibre-reinforced polymer (CFRP). These materials are analysed with and without the contribution of the prestress method. In reference to the prestressed steel solution (which has a weight equal to 79% of the non-prestressed configuration), this study designed an aluminium solution that is 50.7% of the weight of the steel one and a composite solution that is always 20.3% of the steel configuration. In combining the methods, i.e., the materials and prestress, compared to the non-prestressed steel solution with a weight evaluated to be 758 kg, the weight of the aluminium configuration is equal to 40% of the traditional one, and the composite value is reduced to 16%, with a weight of 121 kg. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

12 pages, 11026 KiB  
Article
Comparative Analysis of Coatings Applied for Anti-Corrosion Protection of Public Transport Vehicles’ Structural Parts
by Wojciech Skotnicki and Dariusz Jędrzejczyk
Materials 2024, 17(15), 3763; https://doi.org/10.3390/ma17153763 - 30 Jul 2024
Cited by 1 | Viewed by 1389
Abstract
The conducted research focused on anti-corrosion systems applied for the protection of structural parts used in public transport vehicles. Detailed tests were carried out on samples taken from the brackets supporting the doors of a public transport bus. This work includes the results [...] Read more.
The conducted research focused on anti-corrosion systems applied for the protection of structural parts used in public transport vehicles. Detailed tests were carried out on samples taken from the brackets supporting the doors of a public transport bus. This work includes the results of the chemical analysis of the composition of snow–mud samples taken from the selected bus route and the results of laboratory tests performed on samples with various anti-corrosion coatings. Four types of samples made of S235JR steel with a zinc coating deposited by thermo-diffusion, electroplating, hot-dip zinc galvanization, and the cataphoresis method were tested. Both non-destructive tests—NDTs (the measurement of coating thickness and roughness, microscopic observations)—and destructive tests—DTs (scratch tests, salt chamber tests)—were performed. The conducted tests proved that the most effective method is the use of anti-corrosive hot-dip zinc coating. Full article
Show Figures

Figure 1

26 pages, 18434 KiB  
Article
Effect of Fiber-Laser Parameters on Cutting Accuracy of Thin and Thick S355JR Structural Steel Plates
by Laura Cepauskaite and Regita Bendikiene
Metals 2024, 14(6), 723; https://doi.org/10.3390/met14060723 - 18 Jun 2024
Cited by 1 | Viewed by 2265
Abstract
Fiber lasers, the latest laser-cutting technology, are notable for their high process efficiency, cutting precision, and high cutting quality for thin materials. However, the quality of the cut significantly decreases when machining thicker materials. For now, this is a challenge for the metalworking [...] Read more.
Fiber lasers, the latest laser-cutting technology, are notable for their high process efficiency, cutting precision, and high cutting quality for thin materials. However, the quality of the cut significantly decreases when machining thicker materials. For now, this is a challenge for the metalworking industry. This study investigated the effects of laser power, cutting speed, and auxiliary gas pressure on the fiber-laser cutting quality of 4 and 6 mm thick S355JR steel plates. To evaluate the influence of cutting parameters on cutting quality, surface roughness, dimensional accuracy and cut taper were measured. A microscopic analysis of the laser cuts was performed, revealing the heat-affected zone, transition zone and unaffected base-material zone. Research results show that laser cutting is a complex process, and the correct choice of cutting parameters greatly influences the cutting performance and final quality. An artificial neural network was created and trained using the results from measuring the quality characteristics to achieve optimum cutting quality. The accuracy of the optimization model was assessed by control samples, which were cut using calculated optimum parameters. The actual values of the quality characteristics only slightly differ from the predicted values, showing that the optimization model is suitable for selecting cutting parameters. Full article
Show Figures

Figure 1

14 pages, 4552 KiB  
Article
Influence of the Machining Process on the Wear Properties of Self-Mated Structural Steel in Dry Sliding Conditions
by Gian Luca Garagnani, Enrico Baroni, Annalisa Fortini, Luciano D’Angelo and Mattia Merlin
Metals 2024, 14(6), 679; https://doi.org/10.3390/met14060679 - 7 Jun 2024
Cited by 1 | Viewed by 976
Abstract
This work investigates the tribological behavior of a machined S355JR structural steel in dry sliding conditions for the development of an innovative seismic dissipation system. Flat-ended pins and disks were made of the same structural steel to simulate the conformal contact of different [...] Read more.
This work investigates the tribological behavior of a machined S355JR structural steel in dry sliding conditions for the development of an innovative seismic dissipation system. Flat-ended pins and disks were made of the same structural steel to simulate the conformal contact of different device parts. Pins were machined by turning, while disks were milled and turned to obtain a nominal average surface Ra roughness ranging from 0.8 µm to 6.3 µm. The influence of the surface roughness on the coefficient of friction (COF), specific wear rate (SWR), and time to steady-state (TSS) was investigated. Tribological tests were conducted reciprocating motion in dry sliding conditions to simulate the operating conditions of the device, with 1 Hz and 2 Hz reciprocating frequencies and an applied normal load of 50 N. The Rsk and Rku roughness parameters helped to better understand the tribological response of milled and turned disks, having an influence on the TSS and SWR. Full article
Show Figures

Figure 1

22 pages, 5712 KiB  
Article
Study of the Microstructure and Mechanical Property Relationships of Gas Metal Arc Welded Dissimilar Protection 600T, DP450 and S275JR Steel Joints
by Mustafa Elmas, Oğuz Koçar and Nergizhan Anaç
Crystals 2024, 14(5), 477; https://doi.org/10.3390/cryst14050477 - 19 May 2024
Cited by 3 | Viewed by 1839
Abstract
The need for combining dissimilar materials is steadily increasing in the manufacturing industry, and the resulting products are expected to always have high performance. While there are various methods available for joining such material pairs, one of the commonly preferred techniques is fusion [...] Read more.
The need for combining dissimilar materials is steadily increasing in the manufacturing industry, and the resulting products are expected to always have high performance. While there are various methods available for joining such material pairs, one of the commonly preferred techniques is fusion welding. In this study, three different steel materials (Protection 600T, DP450, and S275JR) were joined using gas metal arc welding (GMAW) in different combinations (similar/dissimilar). The microstructure and mechanical properties of the joints were evaluated. Tensile test, Vickers microhardness (HV 0.1), bending, Charpy V-notch impact testing, and microstructure examinations were conducted to analyze the weld and heat-affected zone. The tensile strengths of the base metal materials Protection 600T, DP450, and S275JR were found to be 1524.73 ± 18.7, 500.8 ± 10.4, and 508.5 ± 9.5 MPa, respectively. In welded samples of similar materials, the highest efficiency was found to be 103.05% for DP450/DP450, while in dissimilar welded joints, it was 105.5% for the DP450/S275JR pair. Hardness values for the base materials Protection 600T, DP450, and S275JR were measured as 526.5 ± 10.5, 153.8 ± 1.8, and 162.5 ± 5.2, respectively. In all welded samples, there was an increase in hardness in the weld zone (due to the welding wire) and the heat-affected zone (due to grain size refinement). While the impact energy values of similar material pairs were close to the base material impact energy values, the impact energy values of dissimilar material pairs varied according to the base materials. In addition, in joints made with similar materials, the bending force was close to the base materials, while a decrease in bending force was observed in joints formed with dissimilar materials. As a result, the welding of DP450 and S275JR materials was carried out efficiently. Protection 600T was welded with other materials, but its welding strength was limited to the strength of the material with low mechanical properties. Full article
Show Figures

Figure 1

14 pages, 7057 KiB  
Article
Vibration Fatigue Analysis of Two Different Variants of Oil Suction Pipes
by Marko Zadravec, Srečko Glodež, Christian Buzzi, Peter Brunnhofer, Martin Leitner and Janez Kramberger
Materials 2024, 17(5), 1057; https://doi.org/10.3390/ma17051057 - 25 Feb 2024
Cited by 1 | Viewed by 1307
Abstract
In order to reduce the overall mass of the product, an improved variant of the engine oil suction pipe in hybrid design is developed and analysed as part of this paper. The vibration fatigue analysis of a simple all-metal suction pipe and the [...] Read more.
In order to reduce the overall mass of the product, an improved variant of the engine oil suction pipe in hybrid design is developed and analysed as part of this paper. The vibration fatigue analysis of a simple all-metal suction pipe and the new hybrid suction pipe variant is derived using computer FEA simulations and vibration measurements on the shaker. The hybrid design of the technical components makes it possible to combine different types of materials in order to achieve the best possible properties and behaviours for the components under the influence of external loads. In our case, we combine a suction pipe made of S235JR mild steel with a 3D-printed polyamide intake funnel featuring a grid designed to prevent particles from entering the engine’s lubrication circuit. This design reduces the mass and shifts the centre of gravity closer to the attachment point of the pipe, as well as to the engine crankcase, which has a positive effect on the values of natural frequencies and vibration amplitudes. The main objective of such a hybrid suction pipe is precisely to reduce vibrations, and thus extend the service life of the components. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop