Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = Ria de Aveiro Lagoon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1309 KiB  
Article
Stakeholders’ Views on a Decadal Evolution of a Southwestern European Coastal Lagoon
by Mariana Pinho, Daniel Crespo, Dionísia Laranjeiro and Ana I. Lillebø
Sustainability 2025, 17(14), 6321; https://doi.org/10.3390/su17146321 - 10 Jul 2025
Viewed by 448
Abstract
Addressing environmental challenges requires the inclusion of local communities with relevant knowledge of the social–ecological system in which they are embedded, in addition to using transdisciplinary approaches that are critical to the co-production of successful and sustainable environmental solutions. A qualitative methodology was [...] Read more.
Addressing environmental challenges requires the inclusion of local communities with relevant knowledge of the social–ecological system in which they are embedded, in addition to using transdisciplinary approaches that are critical to the co-production of successful and sustainable environmental solutions. A qualitative methodology was used to examine stakeholders’ views of decadal changes in Ria de Aveiro, a coastal lagoon on Portugal’s Atlantic coast. Seven focus groups were conducted, which included 42 stakeholders from coastal parishes, in order to obtain identical geographical representation with a study conducted a decade ago. Participants represented a diverse sample of groups interested in or affected by management options and activities in the lagoon system and were asked to reflect on the main changes that occurred over the last decade. Positive changes reflected an increase in the levels of environmental awareness, a positive trajectory of the environmental status of Ria de Aveiro, and a decrease in illegal fishing activities. Persisting concerns referred to the lack of an efficient management body for Ria de Aveiro, pressures related to changes in the hydrodynamic regime of the lagoon, the disappearance of native species and increase in invasive alien species, the abandonment of traditional activities (e.g., harvesting of seagrass and seaweed, salt production, agriculture in lagoon margins, and artisanal fishing), and the degradation and lack of maintenance of salt pans. Our findings highlight the importance of longer-term transdisciplinary and social–ecological research and illustrate how stakeholder views regarding the shortfalls of the movement towards the integrated management of ecosystems remain. Full article
Show Figures

Figure 1

27 pages, 7430 KiB  
Article
Sensing in Inland Waters to Promote Safe Navigation: A Case Study in the Aveiro’s Lagoon
by Diogo Miguel Carvalho, João Miguel Dias and Jorge Ferraz de Abreu
Sensors 2024, 24(23), 7677; https://doi.org/10.3390/s24237677 - 30 Nov 2024
Viewed by 1257
Abstract
Maritime navigation safety relies on preventing accidents, such as collisions and groundings. However, several factors can exacerbate these risks, including inexistent or inadequate buoyage systems and nautical charts with outdated bathymetry. The International Hydrographic Organization (IHO) highlights high costs and traditional methods as [...] Read more.
Maritime navigation safety relies on preventing accidents, such as collisions and groundings. However, several factors can exacerbate these risks, including inexistent or inadequate buoyage systems and nautical charts with outdated bathymetry. The International Hydrographic Organization (IHO) highlights high costs and traditional methods as obstacles to updating bathymetric information, impacting both safety and socio-economic factors. Navigation in inland and coastal waters is particularly complex due to the presence of shallow intertidal zones that are not signaled, where navigation depends on tidal height, vessel draw, and local knowledge. To address this, recreational vessels can use electronic maritime sensors to share critical data with nearby vessels. This article introduces a low-cost maritime data sharing system using IoT technologies for both inland (e.g., Ria de Aveiro) and coastal waters. The system enables the collection and sharing of meteorological and oceanographic data, including depth, tide height, wind direction, and speed. Using a case study in the Ria de Aveiro lagoon, known for its navigational difficulties, the system was developed with a Contextual Design approach focusing on sailors’ needs. It allows for the real-time sharing of data, helping vessels to anticipate maneuvers for safer navigation. The results demonstrate the system’s potential to improve maritime safety in both inland and coastal areas. Full article
(This article belongs to the Special Issue Advanced Sensing Technologies for Marine Intelligent Systems)
Show Figures

Figure 1

23 pages, 4409 KiB  
Article
Assessing Present and Future Ecological Status of Ria de Aveiro: A Modeling Study
by Ana Picado, Humberto Pereira, Nuno Vaz and João Miguel Dias
J. Mar. Sci. Eng. 2024, 12(10), 1768; https://doi.org/10.3390/jmse12101768 - 5 Oct 2024
Cited by 1 | Viewed by 1583
Abstract
Coastal lagoons hold significant ecological value due to their rich biodiversity and essential roles in supporting ecosystems. However, they are increasingly threatened by accelerated climate change, and it is crucial to assess these environments’ ecological status for present and future conditions resulting from [...] Read more.
Coastal lagoons hold significant ecological value due to their rich biodiversity and essential roles in supporting ecosystems. However, they are increasingly threatened by accelerated climate change, and it is crucial to assess these environments’ ecological status for present and future conditions resulting from the impacts of climate change. In this context, the present work aims to evaluate the present and future ecological status of Ria de Aveiro through the application of the numerical model Delft3D. The model was validated, and the results demonstrate that it effectively captures the main characteristics of the lagoon dynamics, although achieving accurate water quality representation poses challenges due to interdependencies in solutions and the inherent complexity of associated processes. The model was explored to characterize the environmental factors of the lagoon and evaluate its ecological status through the computation of several indexes. According to the model results, the main environmental factors present seasonal variations consistent with temperate climates. Regarding the ecological status of Ria de Aveiro, the central channels of the lagoon mostly hold a Good/Moderate status, while regions near river inflows tend to exhibit Moderate to Poor conditions. In future conditions, water quality is expected to improve in winter and autumn due to reductions in river-borne pollutants resulting from the projected decrease in river flow. For spring and summer, a decline in water quality is projected mainly due to the increase in phosphate concentrations in the lagoon. This study provides valuable insights into the ecological dynamics of coastal lagoons under changing climatic conditions, contributing to improved management and mitigation strategies. The findings can guide future conservation efforts and help mitigate the adverse effects of climate change on these vital ecosystems. Full article
Show Figures

Figure 1

26 pages, 12062 KiB  
Article
Assessing the Influence of the Benthic/Pelagic Exchange on the Nitrogen and Phosphorus Status of the Water Column, under Physical Forcings: A Modeling Study
by José Fortes Lopes
J. Mar. Sci. Eng. 2024, 12(8), 1310; https://doi.org/10.3390/jmse12081310 - 2 Aug 2024
Viewed by 1073
Abstract
The main purpose of this study is to set up a biogeochemistry model for the Ria de Aveiro ecosystem and evaluate the relative importance of the main parameters and the processes occurring at the interface between the water column and the upper layer [...] Read more.
The main purpose of this study is to set up a biogeochemistry model for the Ria de Aveiro ecosystem and evaluate the relative importance of the main parameters and the processes occurring at the interface between the water column and the upper layer of the bottom sediment. It addresses a gap in modeling the interactions between the biogeochemical status of the water column and the upper sediment layer in the Ria de Aveiro lagoon ecosystem. Traditional modeling studies treated the bottom sediment as a rigid boundary, ignoring significant biogeochemical interactions at the interface between the water column and the upper layer of the bottom sediment. Therefore, the model integrates, besides the main biogeochemical processes within the water column, those occurring at the upper benthic layer, focusing on nitrogen (N) and phosphorus (P) cycles. This approach aims to enhance the accuracy of model predictions and understanding of the Ria de Aveiro lagoon’s biogeochemical dynamics. The study will be focused on the following coupled state variables: TN/IN and TP/IP, for total and inorganic nitrogen (N) and total and inorganic phosphorus (P), respectively, where total stands for the sum of organic and inorganic components of those elements. The model was set up and validated for some water quality stations of the Ria de Aveiro. Analysis has identified key parameters influencing TN and TP, such as nitrification, denitrification rates, and oxygen penetration. TN was found sensitive to nitrate and ammonium diffusion coefficients, while TP was influenced by iron–phosphate interactions and phosphorus mineralization. Concerning the model validation, the results demonstrated that the RMSE and MAPE values for the main variables fall within an acceptable range, given the uncertainty related to data. The model was applied to assess the impact of the following physical forcing: river flow, water temperature, and salinity on N and P status of the water column. The results clearly demonstrate that bottom layer and water column interactions play an important role in the N and P status of the water column and contribute to the N and P concentration changes of the water. The influence of river flows alone led to contrasting behaviors among the lagoon stations, with significant increases in TP levels, which may be attributed to sediment release from the sediment layer. Nevertheless, the combination of high river flows and elevated nutrient levels at the river boundaries has led to significantly increased nitrogen (N) and phosphorus (P) levels, underscoring the influence of river flow on the interaction between bottom layer sediment and the water column. High water temperatures typically lead to an increase in total phosphorus (TP) levels, indicating a possible release from the sediment layer. Meanwhile, TN levels remained stable. Salinity changes had a minor impact compared to river flow and temperature. The study emphasizes the importance of understanding interactions between the water column and sediment, particularly in shallow intertidal areas. Overall, the inclusion of biogeochemical interactions between the benthic and pelagic layers represents progress in ecosystem modeling of the Ria de Aveiro. Full article
Show Figures

Figure 1

14 pages, 2749 KiB  
Article
Combined Use of Fatty Acid Profiles and Elemental Fingerprints to Trace the Geographic Origin of Live Baits for Sports Fishing: The Solitary Tube Worm (Diopatra neapolitana, Annelida, Onuphidae) as a Case Study
by Fernando Ricardo, Marta Lobão Lopes, Renato Mamede, M. Rosário Domingues, Eduardo Ferreira da Silva, Carla Patinha and Ricardo Calado
Animals 2024, 14(9), 1361; https://doi.org/10.3390/ani14091361 - 30 Apr 2024
Cited by 3 | Viewed by 1541
Abstract
Diopatra neapolitana Delle Chiaje, 1841 (Annelida, Onuphidae) is one of the most exploited polychaete species in European waters, particularly in Ria de Aveiro, a coastal lagoon in mainland Portugal, where the overexploitation of this resource has led to a generalized decline of local [...] Read more.
Diopatra neapolitana Delle Chiaje, 1841 (Annelida, Onuphidae) is one of the most exploited polychaete species in European waters, particularly in Ria de Aveiro, a coastal lagoon in mainland Portugal, where the overexploitation of this resource has led to a generalized decline of local populations. In an attempt to reduce the impact of harvesting, several management actions were implemented, but illegal poaching still fuels a parallel economy that threatens the sustainable use of this marine resource. The present study evaluated the combination of fatty acid profiles and elemental fingerprints of the whole body and jaws, respectively, of D. neapolitana collected from four harvesting locations within Ria de Aveiro in order to determine if their geographic origin could be correctly assigned post-harvesting. Results showed that both fatty acid profiles and elemental fingerprints differ significantly among locations, discriminating the geographic origin with higher accuracy when combining these two natural barcodes than when employing each individually. The present work can, therefore, contribute to the implementation of an effective management plan for the sustainable use of this marine resource, making it possible to detect if D. neapolitana was sourced from no-take zones and if it was collected from the place of origin claimed by live bait traders. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

19 pages, 96859 KiB  
Article
Insights for Sea Outfall Turbid Plume Monitoring with High-Spatial-Resolution Satellite Imagery Application in Portugal
by Bruna Faria, Renato Mendes, Carina Lurdes Lopes, Ana Picado, Magda Sousa and João Miguel Dias
Remote Sens. 2023, 15(13), 3368; https://doi.org/10.3390/rs15133368 - 30 Jun 2023
Cited by 6 | Viewed by 2536
Abstract
Coastal municipalities and industries often discharge poorly treated wastewater into proximate marine and estuarine environments. The urban and/or effluent input can lead to eutrophication and lower water quality, as it holds high concentrations of nutrients and pollutants. One widely applied tool to increase [...] Read more.
Coastal municipalities and industries often discharge poorly treated wastewater into proximate marine and estuarine environments. The urban and/or effluent input can lead to eutrophication and lower water quality, as it holds high concentrations of nutrients and pollutants. One widely applied tool to increase effluent dispersion and direct it away from coastal areas, thus causing fewer impacts on human activities, is sea outfall. In Aveiro, Portugal, the São Jacinto sea outfall construction was completed in 1998; however, limited literature regarding the sea outfall’s monitoring using satellite data is available. The methodology in this study involved collecting four years’ worth (2016–2019) of satellite data to investigate visible traces of the interaction between the S. Jacinto sewage water mass and the Ria de Aveiro lagoon ecosystem using ocean color and spectral analysis, and producing new qualitative data regarding sea outfall plume dispersion monitoring through high-resolution Sentinel-2 imagery. The results showed a clear spectral signature of the sewage water mass, and a seasonal pattern was observed in which the plume was more evident in winter and autumn. Additionally, the coastal longshore current and the Aveiro lagoon’s runoff were able to restrict the marine outfall’s dispersion superficially. Ocean color data were revealed to be a factual and cost-effective tool to monitor the plume water. Finally, an exchange between the marine outfall water mass and Ria de Aveiro lagoon could happen in high tide under northern wind conditions. Therefore, it is important to monitor the water quality to ensure the coastal ecosystem’s good environmental state. Full article
Show Figures

Figure 1

28 pages, 16877 KiB  
Article
Impact of Extreme Wind and Freshwater Runoff on the Salinity Patterns of a Mesotidal Coastal Lagoon
by Francisco Pereira, Ana Picado, Humberto Pereira, João Pedro Pinheiro, Carina Lurdes Lopes and João Miguel Dias
J. Mar. Sci. Eng. 2023, 11(7), 1338; https://doi.org/10.3390/jmse11071338 - 30 Jun 2023
Cited by 2 | Viewed by 2035
Abstract
The interaction between tide, river runoff, and wind in coastal lagoons induces complex salinity gradients, which are remarkable when the meteorological forcing is exacerbated. This work aims to characterize the salinity structure under extreme freshwater and wind events in the Ria de Aveiro [...] Read more.
The interaction between tide, river runoff, and wind in coastal lagoons induces complex salinity gradients, which are remarkable when the meteorological forcing is exacerbated. This work aims to characterize the salinity structure under extreme freshwater and wind events in the Ria de Aveiro coastal lagoon (Portugal). The Delft3D model was implemented and validated in 3D mode and used to perform simulations forced with extreme freshwater and wind scenarios. Results show that forcing conditions determine salinity stratification intensity and location. Generally, stratification increases as the freshwater increases, while the salinity intrusion moves downstream. Extreme wind tends to destroy stratification but fails to promote full-depth mixing, which is also dependent on the wind direction, as shown for the Espinheiro channel. The salinity intrusion is also impacted by wind events, being NW storms responsible for an upstream salt transport along the Mira channel and a downstream transport along the Espinheiro channel, and SW storms for an upstream displacement of the salinity intrusion along the São Jacinto channel. Finally, it is observed that the advection of a freshwater plume from the Vouga River into the middle of the São Jacinto channel under high freshwater scenarios causes an unusual local salinity pattern. This plume can either be pushed upstream or prevented from entering the channel, depending on the wind direction. Full article
Show Figures

Figure 1

10 pages, 2100 KiB  
Communication
Photosynthetic Pigment and Carbohydrate Profiling of Fucus vesiculosus from an Iberian Coastal Lagoon
by Ana C. R. Resende, Rui Pereira, Cláudia Nunes, Sónia Cruz, Ricardo Calado and Paulo Cartaxana
Plants 2023, 12(6), 1324; https://doi.org/10.3390/plants12061324 - 15 Mar 2023
Cited by 4 | Viewed by 3150
Abstract
Fucus vesiculosus is a brown seaweed with applications in the food, pharmaceutic, and cosmetic industries. Among its most valuable bioactive compounds are the pigment fucoxanthin and polysaccharides (e.g., fucoidans). In this study, we profiled the photosynthetic pigments and carbohydrates of F. vesiculosus from [...] Read more.
Fucus vesiculosus is a brown seaweed with applications in the food, pharmaceutic, and cosmetic industries. Among its most valuable bioactive compounds are the pigment fucoxanthin and polysaccharides (e.g., fucoidans). In this study, we profiled the photosynthetic pigments and carbohydrates of F. vesiculosus from six locations along the Ílhavo Channel in the Iberian coastal lagoon of Ria de Aveiro, Portugal. Photosynthetic performance (Fv/Fm), pigment, and carbohydrate concentrations were similar between locations, despite differences in environmental factors, such as salinity and periods of exposure to desiccation. Concentration of total carbohydrates (neutral sugars + uronic acids) averaged 418 mg g−1 dw. Fucose was the second most abundant neutral sugar, with an average concentration of 60.7 mg g−1 dw, indicating a high content of fucoidans. Photosynthetic pigments included chlorophylls a and c, β,β-carotene, and the xanthophylls fucoxanthin, violaxanthin, antheraxanthin, and zeaxanthin. Concentrations of fucoxanthin were higher than those reported for most brown macroalgae, averaging 0.58 mg g−1 dw (65% of total carotenoids). This study indicates that F. vesiculosus from Ria de Aveiro is a valuable macroalgal resource for aquaculture companies operating in the region, with considerable potential to yield high-value bioactive compounds. Full article
(This article belongs to the Special Issue Seaweed Biology: Focusing on Food, Materials and Bioenergy)
Show Figures

Figure 1

25 pages, 7368 KiB  
Article
Using Different Classic Turbulence Closure Models to Assess Salt and Temperature Modelling in a Lagunar System: A Sensitivity Study
by José Fortes Lopes
J. Mar. Sci. Eng. 2022, 10(11), 1750; https://doi.org/10.3390/jmse10111750 - 14 Nov 2022
Cited by 1 | Viewed by 2170
Abstract
Turbulence modelling is an important issue when dealing with hydrodynamic and transport models for better simulation of the transport of dissolved or suspended substances in a body-water. It controls processes involving physical balances (salt and water temperature) and, therefore, the ecosystem equilibrium. The [...] Read more.
Turbulence modelling is an important issue when dealing with hydrodynamic and transport models for better simulation of the transport of dissolved or suspended substances in a body-water. It controls processes involving physical balances (salt and water temperature) and, therefore, the ecosystem equilibrium. The study arises from the need to model the turbulence more efficiently when dealing with extreme situations on the Ria de Aveiro (Portugal), a coastal lagoon shallow water system dominated by tidal transport. Because the turbulence model is coupled to the hydrodynamic and transport models, a correct estimation of the eddy viscosity is important in simulating the salt and the heat transports. The aim is to assess the performance of four turbulence schemes/models (k, k-ε, Smagorinsky’s, and k-ε/Smagorinsky’s (k-ε/Sma), where k is turbulent kinetic energy and ε the dissipation rate of the turbulent kinetic energy) associated to a coupled hydrodynamic and transport models to simulate the eddy viscosity, the salinity, and the temperature. Overall, the results point out that among the different models/schemes used, the is the one which provides a more realistic value of the eddy viscosity within the range (1–6) m2 s−1, but most probably (1–3) m2 s−1. The application of the sensitivity analysis to some non-universal k-ε/Sma parameters evidenced significant sensitivity for the eddy viscosity and the salinity and moderate sensitivity for the water temperature. A 100% adjustment of the parameter values relative to the reference, translated into variations within the range of (1, 4) m2 s−1, (0, 13) PSU, and (1, 2.20) °C, for the eddy viscosity, salinity, and water temperature, respectively. Full article
Show Figures

Figure 1

24 pages, 2410 KiB  
Article
Interplay of Seasonality, Major and Trace Elements: Impacts on the Polychaete Diopatra neapolitana
by Valéria Giménez, Paulo Cardoso, Carina Sá, Carla Patinha, Eduardo Ferreira da Silva, Etelvina Figueira and Adília Pires
Biology 2022, 11(8), 1153; https://doi.org/10.3390/biology11081153 - 31 Jul 2022
Cited by 6 | Viewed by 2206
Abstract
Polychaetes are known to be good bioindicators of marine pollution, such as inorganic contamination. Major and trace elements are commonly present in sediment and may be accumulated by polychaetes such as the tubiculous Diopatra neapolitana. In this study, D. neapolitana individuals were [...] Read more.
Polychaetes are known to be good bioindicators of marine pollution, such as inorganic contamination. Major and trace elements are commonly present in sediment and may be accumulated by polychaetes such as the tubiculous Diopatra neapolitana. In this study, D. neapolitana individuals were collected in the autumn, winter, spring, and summer of 2018/2019 from the Ria de Aveiro lagoon (western Portugal) to understand how seasonality influences element accumulation. The impact of the interaction of seasonality and elements on oxidative status, energy metabolism, and oxidative damage was also assessed. The obtained results showed that the activity of the antioxidant enzymes catalase, glutathione S-transferases, and non-protein thiol levels were higher in summer and that superoxide dismutase, lipid peroxidation, and electron transport system activity increased in winter. The lowest glycogen levels were observed during spring, and protein carbonylation was the highest during autumn. These results could mainly be related to high temperatures and the bioaccumulation of Al, As, Mn, and Zn. Energy-related parameters increased during spring and autumn, mainly due to the bioaccumulation of the same elements during spring and summer. Lipid damage was higher during winter, which was mainly due to salinity and temperature decreases. Overall, this study demonstrates that seasonality plays a role in element accumulation by polychaetes and that both impact the oxidative status of D. neapolitana. Full article
(This article belongs to the Special Issue Diopatra: The Amazing Ecosystem Engineering Polychaetous Annelid)
Show Figures

Figure 1

21 pages, 3794 KiB  
Article
Forwarding in Energy-Constrained Wireless Information Centric Networks
by Daniel Marques, Carlos Senna and Miguel Luís
Sensors 2022, 22(4), 1438; https://doi.org/10.3390/s22041438 - 13 Feb 2022
Cited by 5 | Viewed by 2517
Abstract
Information Centric Networks (ICNs) have been considered one of the most promising candidates to overcome the disadvantages of host-centric architectures when applied to IoT networks, having the potential to address the challenges of a smart city. One of the foundations of a smart [...] Read more.
Information Centric Networks (ICNs) have been considered one of the most promising candidates to overcome the disadvantages of host-centric architectures when applied to IoT networks, having the potential to address the challenges of a smart city. One of the foundations of a smart city is its sensory capacity, which is obtained through devices associated with the IoT concept. The more sensors spread out, the greater the ability to sense the city. However, such a scale demands high energy requirements and an effective improvement in the energy management is unavoidable. To improve the energy management, we are proposing an efficient forwarding scheme in energy-constrained wireless ICNs. To achieve this goal, we consider the type of devices, their internal energy and the network context, among other parameters. The proposed forwarding strategy extends and adapts concepts of ICNs, by means of packet domain analysis, neighbourhood evaluation and node sleeping and waking strategies. The proposed solution takes advantage of the neighbourhood to be aware of the moments to listen and forward packets in order to consistently address mobility, improving the quality of content delivery. The evaluation is performed by simulation with real datasets of urban mobility, one from the lagoon of “Ria de Aveiro” and the other from a vehicular network in the city of Porto. The results show that the proposed forwarding scheme resulted in significant improvements in network content availability, in the overall energy saving and, consequently, in the network lifetime. Full article
(This article belongs to the Special Issue Energy-Efficient Communication Networks and Systems)
Show Figures

Figure 1

17 pages, 34038 KiB  
Article
Coastal Floods Induced by Mean Sea Level Rise—Ecological and Socioeconomic Impacts on a Mesotidal Lagoon
by Francisco Silveira, Carina Lurdes Lopes, João Pedro Pinheiro, Humberto Pereira and João Miguel Dias
J. Mar. Sci. Eng. 2021, 9(12), 1430; https://doi.org/10.3390/jmse9121430 - 14 Dec 2021
Cited by 17 | Viewed by 4033
Abstract
Coastal floods are currently a strong threat to socioeconomic activities established on the margins of lagoons and estuaries, as well as to their ecological equilibrium, a situation that is expected to become even more worrying in the future in a climate change context. [...] Read more.
Coastal floods are currently a strong threat to socioeconomic activities established on the margins of lagoons and estuaries, as well as to their ecological equilibrium, a situation that is expected to become even more worrying in the future in a climate change context. The Ria de Aveiro lagoon, located on the northwest coast of Portugal, is not an exception to these threats, especially considering the low topography of its margins which has led to several flood events in the past. The growing concerns with these regions stem from the mean sea level (MSL) rise induced by climate changes as well as the amplification of the impacts of storm surge events, which are predicted to increase in the future due to higher mean sea levels. Therefore, this study aims to evaluate the influence of MSL rise on the inundation of Ria de Aveiro habitats and to assess the changes in inundation patterns resulting from frequent storm surges (2-year return period) from the present to the future, assessing their ecological and socioeconomic impacts. For this, a numerical model (Delft3D), previously calibrated and validated, was used to simulate the lagoon hydrodynamics under different scenarios combining MSL rise and frequent storm surge events. The numerical results demonstrated that MSL rise can change the vertical zonation and threaten the local habitats. Many areas of the lagoon may change from supratidal/intertidal to intertidal/subtidal, with relevant consequences for local species. The increase in MSL expected for the end of the century could make the lagoon more vulnerable to the effect of frequent storm surges, harming mostly agricultural areas, causing great losses for this sector and for many communities who depend on it. These extreme events can also affect artificialized areas and, in some cases, endanger lives. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

12 pages, 2100 KiB  
Article
Reproductive Cycle of the Seagrass Zostera noltei in the Ria de Aveiro Lagoon
by Manuel Ankel, Marcos Rubal, Puri Veiga, Leandro Sampaio and Laura Guerrero-Meseguer
Plants 2021, 10(11), 2286; https://doi.org/10.3390/plants10112286 - 26 Oct 2021
Cited by 5 | Viewed by 3222
Abstract
Sexual reproduction in seagrasses is essential to increase their resilience towards environmental stressors, but its phenology is still unknown in some regions, limiting our knowledge about the recovery capacity of these ecosystems. In this study, the flowering effort, reproductive phenology, seed production and [...] Read more.
Sexual reproduction in seagrasses is essential to increase their resilience towards environmental stressors, but its phenology is still unknown in some regions, limiting our knowledge about the recovery capacity of these ecosystems. In this study, the flowering effort, reproductive phenology, seed production and ability of germination of Zostera noltei was studied for the first time in the Ria de Aveiro lagoon, Portugal. Flowering of Z. noltei in the Ria de Aveiro lasts from June to November, reaching a peak between July and August. All the meadows showed similar flowering effort and phenology over time. Comparing with other European populations, the flowering effort of Z. noltei in Ria de Aveiro lasted for a longer period, which could be related with the milder temperatures in summer and autumn and the great anthropogenic stress to which the meadows are subjected in the lagoon. The number of seeds produced and their ability of germination were similar among meadows and sampling periods, reaching levels similar to those of other European regions. Nevertheless, future studies are needed to determine the fate of the produced seeds in the field to have a better understanding about the natural recovery capacity of the species. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

27 pages, 15046 KiB  
Article
Extreme Meteorological Events in a Coastal Lagoon Ecosystem: The Ria de Aveiro Lagoon (Portugal) Case Study
by José Fortes Lopes, Carina Lurdes Lopes and João Miguel Dias
J. Mar. Sci. Eng. 2021, 9(7), 727; https://doi.org/10.3390/jmse9070727 - 30 Jun 2021
Cited by 6 | Viewed by 2951
Abstract
Extreme weather events (EWEs) represent meteorological hazards for coastal lagoon hydrodynamics, of which intensity and frequency are increasing over the last decades as a consequence of climate changes. The imbalances they generated should affect primarily vulnerable low-lying areas while potentially disturbing the physical [...] Read more.
Extreme weather events (EWEs) represent meteorological hazards for coastal lagoon hydrodynamics, of which intensity and frequency are increasing over the last decades as a consequence of climate changes. The imbalances they generated should affect primarily vulnerable low-lying areas while potentially disturbing the physical balances (salt and water temperature) and, therefore, the ecosystem equilibrium. This study arises from the need to assess the impact of EWEs on the Ria de Aveiro, a lagoon situated in the Portuguese coastal area. Furthermore, it was considered that those events occur under the frame of a future sea-level rise, as predicted by several climate change scenarios. Two EWEs scenarios, a dry and an extremely wet early summer reflecting past situations and likely to occur in the future, were considered to assess the departure from the system baseline functioning. It was used as a biogeochemistry model that simulates the hydrodynamics, as well as the baseline physical and biogeochemistry state variables. The dry summer scenario, corresponding to a significant reduction in the river’s inflow, evidences a shift of the system to a situation under oceanic dominance characterized by colder and saltier water (~18 °C; 34 PSU) than the baseline while lowering the concentration of the nutrients and reducing the phytoplankton population to a low-level limit. Under a wet summer scenario, the lagoon shifted to a brackish and warmer situation (~21 °C, <15 PSU) in a time scale of some tidal periods, driven by the combining effect of the tidal transport and the river’s inflow. Phytoplankton patterns respond to variability on local and short-term scales that reflect physical conditions within the lagoon, inducing nutrient-supported growth. Overall, the results indicate that EWEs generate local and transient changes in physical conditions (namely salinity and water temperature) in response to the characteristic variability of the lagoon’s hydrodynamics associated with a tidal-dominated system. Therefore, in addition to the potential impact of changing physical conditions on the ecosystem, saline intrusion along the lagoon or the transfer of brackish water to the mouth of the system are the main consequences of EWEs, while the main biogeochemistry changes tend to remain moderate. Full article
(This article belongs to the Special Issue Sea Level Rise: Drivers, Variability and Impacts)
Show Figures

Figure 1

26 pages, 6963 KiB  
Article
A Comprehensive Estuarine Hydrodynamics-Salinity Study: Impact of Morphologic Changes on Ria de Aveiro (Atlantic Coast of Portugal)
by João Miguel Dias, Francisco Pereira, Ana Picado, Carina Lurdes Lopes, João Pedro Pinheiro, Sérgio Miguel Lopes and Paulo Gabriel Pinho
J. Mar. Sci. Eng. 2021, 9(2), 234; https://doi.org/10.3390/jmse9020234 - 22 Feb 2021
Cited by 23 | Viewed by 4856
Abstract
Shallow coastal lagoons driven by tidal processes are extremely dynamic environments prone to continuous natural and anthropogenic pressures. The hydrodynamics of these systems deeply depends on the effect of local morphology on the tidal propagation, so their permanent evolution constantly changes tidal dependent [...] Read more.
Shallow coastal lagoons driven by tidal processes are extremely dynamic environments prone to continuous natural and anthropogenic pressures. The hydrodynamics of these systems deeply depends on the effect of local morphology on the tidal propagation, so their permanent evolution constantly changes tidal dependent processes. For this reason, the present work aims to review the main characteristics of Ria de Aveiro hydrodynamics, a shallow lagoon located at the Atlantic Coast of Portugal, evaluating its evolution over the last 30 years (between 1987 and 2020) and investigating the main morphological changes in its origin. For this purpose, a comparative analysis is performed to determine the main process, including the observed hydrodynamic changes: Deepening of the inlet channel or of the main lagoon channels. To achieve these goals, the authors explored a remarkable database including bathymetric, tide gauge, and salinity data from 1987 until the present. This analysis is completed by the exploitation of a hydrodynamical model (Delft3D), validated against field data. Several simulations were performed to analyse changes in tidal propagation along the lagoon channels (considering the main semi-diurnal constituent M2), tidal asymmetry, tidal currents, tidal prism, and salinity patterns. The results show that the general deepening of the lagoon observed between 1987 and 2020 led to important changes in the lagoon hydrodynamics, namely the increase/decrease of the M2 constituent amplitude/phase, as well as the increase of tidal currents and salt intrusion within the entire lagoon, with the changes being amplified towards the head of the main channels. Although the inlet deepening partially contributed to the modifications found, the results revealed that the deepening of the main lagoon channels had the most significant contribution to the changes observed during the last 30 years. Full article
(This article belongs to the Special Issue Feature Reviews in Marine Science and Engineering)
Show Figures

Figure 1

Back to TopTop