Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Rhizobium radiobacter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 23163 KB  
Review
Major Pathogens Affecting Carob in the Mediterranean Basin: Current Knowledge and Outlook in Italy
by Ivana Castello, Giancarlo Polizzi and Alessandro Vitale
Pathogens 2023, 12(11), 1357; https://doi.org/10.3390/pathogens12111357 - 15 Nov 2023
Cited by 6 | Viewed by 3392
Abstract
The main pathogens affecting the carob (Ceratonia siliqua) tree in the Mediterranean basin are described in this overview. The most widespread diseases periodically occurring in carob orchards are powdery mildew (Pseudoidium ceratoniae) and cercospora leaf spot (Pseudocercospora ceratoniae [...] Read more.
The main pathogens affecting the carob (Ceratonia siliqua) tree in the Mediterranean basin are described in this overview. The most widespread diseases periodically occurring in carob orchards are powdery mildew (Pseudoidium ceratoniae) and cercospora leaf spot (Pseudocercospora ceratoniae). The causal agents of “black leaf spots” (e.g., Pestalotiopsis, Phyllosticta and Septoria spp.) are responsible for symptoms similar to those previously mentioned for foliar diseases, but are reported in carob orchards at a negligible frequency. Likewise, canker and branch diebacks caused by fungal species belonging to Botryosphaeriaceae are almost never recorded. Among the rots of wood tissues that may compromise old carob specimens, “brown cubical rot” caused by Laetiporus sulphureus is the most widespread and recurrent issue; this pathogen is also well-known for producing edible fruit bodies that are appreciated for pharmaceutical and industrial purposes. On the other hand, “white rots” caused by Fomes and Ganoderma species are less common and reported for the first time in this review. Gall-like protuberances on twigs of uncertain aetiology or tumors on branches associated with Rhizobium radiobacter are described, although these symptoms are seldom detected, as they are also observed for necrotic leaf spots caused by Pseudomonas syringae pv. ciccaronei. A worldwide list of pathogens not yet recorded but at high risk of potential introduction in Italian carob-producing areas is also provided. Finally, concerns related to new phytopathogenic fungi vectored by the invasive Xylosandrus compactus ambrosia beetle are addressed. All the described pathogens could become limiting factors for carob production in the near future, because they could be favored by high-density orchards, the increasing global network of trade exchanges, and the high frequency at which extreme events related to climate change occur globally. Thus, symptoms and signs, causal agents, epidemiology, and, whenever applicable, recommendations for disease prevention and management are provided in this review. Full article
(This article belongs to the Special Issue Prevention and Management of Tree Diseases)
Show Figures

Figure 1

19 pages, 2814 KB  
Article
Microorganisms for Bioremediation of Soils Contaminated with Heavy Metals
by Victor V. Atuchin, Lyudmila K. Asyakina, Yulia R. Serazetdinova, Anna S. Frolova, Natalia S. Velichkovich and Alexander Yu. Prosekov
Microorganisms 2023, 11(4), 864; https://doi.org/10.3390/microorganisms11040864 - 28 Mar 2023
Cited by 64 | Viewed by 17382
Abstract
Heavy-metal contaminants are one of the most relevant problems of contemporary agriculture. High toxicity and the ability to accumulate in soils and crops pose a serious threat to food security. To solve this problem, it is necessary to accelerate the pace of restoration [...] Read more.
Heavy-metal contaminants are one of the most relevant problems of contemporary agriculture. High toxicity and the ability to accumulate in soils and crops pose a serious threat to food security. To solve this problem, it is necessary to accelerate the pace of restoration of disturbed agricultural lands. Bioremediation is an effective treatment for agricultural soil pollution. It relies on the ability of microorganisms to remove pollutants. The purpose of this study is to create a consortium based on microorganisms isolated from technogenic sites for further development in the field of soil restoration in agriculture. In the study, promising strains that can remove heavy metals from experimental media were selected: Pantoea sp., Achromobacter denitrificans, Klebsiella oxytoca, Rhizobium radiobacter, and Pseudomonas fluorescens. On their basis, consortiums were compiled, which were investigated for the ability to remove heavy metals from nutrient media, as well as to produce phytohormones. The most effective was Consortium D, which included Achromobacter denitrificans, Klebsiella oxytoca, and Rhizobium radiobacter in a ratio of 1:1:2, respectively. The ability of this consortium to produce indole-3-acetic acid and indole-3-butyric acid was 18.03 μg/L and 2.02 μg/L, respectively; the absorption capacity for heavy metals from the experimental media was Cd (56.39 mg/L), Hg (58.03 mg/L), As (61.17 mg/L), Pb (91.13 mg/L), and Ni (98.22 mg/L). Consortium D has also been found to be effective in conditions of mixed heavy-metal contamination. Due to the fact that the further use of the consortium will be focused on the soil of agricultural land cleanup, its ability to intensify the process of phytoremediation has been studied. The combined use of Trifolium pratense L. and the developed consortium ensured the removal of about 32% Pb, 15% As, 13% Hg, 31% Ni, and 25% Cd from the soil. Further research will be aimed at developing a biological product to improve the efficiency of remediation of lands withdrawn from agricultural use. Full article
Show Figures

Figure 1

31 pages, 712 KB  
Article
Bacteria of Zoonotic Interest Identified on Edible Freshwater Fish Imported to Australia
by Michelle Williams, Shokoofeh Shamsi, Thomas Williams and Marta Hernandez-Jover
Foods 2023, 12(6), 1288; https://doi.org/10.3390/foods12061288 - 17 Mar 2023
Cited by 3 | Viewed by 4878
Abstract
Previous research has shown that freshwater edible fish imported into Australia are not compliant with Australian importation guidelines and as a result may be high risk for bacterial contamination. In the present study, the outer surface of imported freshwater fish were swabbed, cultured, [...] Read more.
Previous research has shown that freshwater edible fish imported into Australia are not compliant with Australian importation guidelines and as a result may be high risk for bacterial contamination. In the present study, the outer surface of imported freshwater fish were swabbed, cultured, confirmatory tests performed and antimicrobial patterns investigated. Channidae fish (Sp. A/n = 66) were contaminated with zoonotic Salmonella sp./Staphylococcus aureus (n = 1/66) and other bacteria implicated in cases of opportunistic human infection, these being Pseudomonas sp. (including P. mendocina and P. pseudoalcaligenes (n = 34/66)); Micrococcus sp. (n = 32/66); Comamonas testosteroni (n = 27/66) and Rhizobium radiobacter (n = 3/66). Pangasiidae fish (Species B/n = 47) were contaminated with zoonotic Vibrio fluvialis (n = 10/47); Salmonella sp. (n = 6/47) and environmental bacteria Micrococcus sp. (n = 3/47). One sample was resistant to all antimicrobials tested and is considered to be Methicillin Resistant S. aureus. Mud, natural diet, or vegetation identified in Sp. A fish/or packaging were significantly associated with the presence of Pseudomonas spp. The study also showed that visibly clean fish (Sp. B) may harbour zoonotic bacteria and that certain types of bacteria are common to fish groups, preparations, and contaminants. Further investigations are required to support the development of appropriate food safety recommendations in Australia. Full article
(This article belongs to the Special Issue Research on Toxic Substances in Food of Marine Origin)
Show Figures

Graphical abstract

15 pages, 1995 KB  
Article
Development of a Versatile Method to Construct Direct Electron Transfer-Type Enzyme Complexes Employing SpyCatcher/SpyTag System
by Takumi Yanase, Junko Okuda-Shimazaki, Ryutaro Asano, Kazunori Ikebukuro, Koji Sode and Wakako Tsugawa
Int. J. Mol. Sci. 2023, 24(3), 1837; https://doi.org/10.3390/ijms24031837 - 17 Jan 2023
Cited by 9 | Viewed by 3772
Abstract
The electrochemical enzyme sensors based on direct electron transfer (DET)-type oxidoreductase-based enzymes are ideal for continuous and in vivo monitoring. However, the number and types of DET-type oxidoreductases are limited. The aim of this research is the development of a versatile method to [...] Read more.
The electrochemical enzyme sensors based on direct electron transfer (DET)-type oxidoreductase-based enzymes are ideal for continuous and in vivo monitoring. However, the number and types of DET-type oxidoreductases are limited. The aim of this research is the development of a versatile method to create a DET-type oxidoreductase complex based on the SpyCatcher/SpyTag technique by preparing SpyCatcher-fused heme c and SpyTag-fused non-DET-type oxidoreductases, and by the in vitro formation of DET-type oxidoreductase complexes. A heme c containing an electron transfer protein derived from Rhizobium radiobacter (CYTc) was selected to prepare SpyCatcher-fused heme c. Three non-DET-type oxidoreductases were selected as candidates for the SpyTag-fused enzyme: fungi-derived flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (GDH), an engineered FAD-dependent d-amino acid oxidase (DAAOx), and an engineered FMN-dependent l-lactate oxidase (LOx). CYTc-SpyCatcher (CYTc-SC) and SpyTag-Enzymes (ST-GDH, ST-DAAOx, ST-LOx) were prepared as soluble molecules while maintaining their redox properties and catalytic activities, respectively. CYTc-SC/ST-Enzyme complexes were formed by mixing CYTc-SpyCatcher and SpyTag-Enzymes, and the complexes retained their original enzymatic activity. Remarkably, the heme domain served as an electron acceptor from complexed enzymes by intramolecular electron transfer; consequently, all constructed CYTc-SC/ST-Enzyme complexes showed DET ability to the electrode, demonstrating the versatility of this method. Full article
(This article belongs to the Special Issue Protein and Nucleotide Engineering for Diagnoses and Biosensing II)
Show Figures

Figure 1

15 pages, 6174 KB  
Case Report
A Rare Case of Endophthalmitis with Rhizobium radiobacter, Soon after a Resolved Keratitis: Case Report
by Andrei Theodor Balasoiu, Ovidiu Mircea Zlatian, Alice Elena Ghenea, Livia Davidescu, Alina Lungu, Andreea Loredana Golli, Anca-Loredana Udriștoiu and Maria Balasoiu
Antibiotics 2022, 11(7), 905; https://doi.org/10.3390/antibiotics11070905 - 6 Jul 2022
Cited by 7 | Viewed by 3218
Abstract
Background: Rhizobium (Agrobacterium) species are plant aerobic bacteria, which in some cases can produce endophthalmitis in humans after corneal trauma. Case presentation: A 42-year-old female patient presented in the Emergency Department of the Emergency County Hospital of Craiova, Romania, reporting pain, [...] Read more.
Background: Rhizobium (Agrobacterium) species are plant aerobic bacteria, which in some cases can produce endophthalmitis in humans after corneal trauma. Case presentation: A 42-year-old female patient presented in the Emergency Department of the Emergency County Hospital of Craiova, Romania, reporting pain, epiphora, and blurry vision in her right eye for about five days. This initial infectious keratitis episode was successfully resolved, but after 20 days she presented again after trauma with a leaf with corneal abscess. In the conjunctival secretion, R. radiobacter was identified. Despite antibiotherapy, the patient’s state did not improve, and ultimately the eye was eviscerated. Methods: A search was performed in the ProQuest, PubMed, and ScienceDirect databases for the terms Agrobacterium, Rhizobium, radiobacter, and eye. We eliminated non-human studies, editorials and commentaries, and non-relevant content, and excluded the duplicates. Results: In total, 138 studies were initially obtained, and then we selected 26 studies for retrieval. After the selection process, we ended up including 17 studies in our analysis. Most studies reported R. radiobacter endophthalmitis after ocular surgical procedures or outdoor activities that involve exposure to soil. Conclusion: R. radiobacter is a rare cause of endophthalmitis after eye trauma that generally responds well to usual antibiotherapy, but occasionally can evolve to severe, leading to the loss of the eye. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

4 pages, 194 KB  
Proceeding Paper
The Influence of Lipids on the Natural Biodiversity of Cultivated Aboriginal Microflora of Urban Soils
by Elena Moiseeva, Alexander Khudokormov, Nikita Volchenko, Andrey Samkov and Maria Kruglova
Proceedings 2020, 66(1), 17; https://doi.org/10.3390/proceedings2020066017 - 5 Jan 2021
Viewed by 1312
Abstract
Urban soils are subject to significant anthropogenic impact, which affects the physicochemical composition of soils, as well as microbial natural diversity. Anthropogenic pollution of urban soils with lipids, in particular vegetable and mineral oils, can pose a certain danger to the biological balance [...] Read more.
Urban soils are subject to significant anthropogenic impact, which affects the physicochemical composition of soils, as well as microbial natural diversity. Anthropogenic pollution of urban soils with lipids, in particular vegetable and mineral oils, can pose a certain danger to the biological balance in the soil ecosystem. For the quantitative determination of the number of heterotrophic microorganisms, MPA, a mineral medium with oil, was used for the isolation of lipolytic bacteria. In the first two weeks after the addition of lipids, a decrease was observed in relation to the control of the number of heterotrophic microorganisms in all variants of the experiment. The negative effect of lipid contamination on the native soil microbiota was short-lived, and by the fourth week of the experiment, a sharp increase in heterotrophic microorganisms was noted. Twenty six strains of bacteria were isolated from the mineral medium with oil. Nine strains were identified that predominated in their numbers over the rest of the bacteria in this environment. Six strains were identified as belonging to the order Enterobacterales, two strains belonged to the order Pseudomonadales, genus Pseudomonas, and one strain belonged to Rhizobium radiobacter. Full article
(This article belongs to the Proceedings of The 1st International Electronic Conference on Microbiology)
Show Figures

Figure 1

17 pages, 3852 KB  
Article
Diversity and Function of Endo-Bacteria in Bursaphelenchus xylophilus from Pinus massoniana Lamb. in Different Regions
by Yan-Mei Fu, Hong-Bin Liu and Xiao-Qin Wu
Forests 2020, 11(5), 487; https://doi.org/10.3390/f11050487 - 26 Apr 2020
Cited by 11 | Viewed by 3081
Abstract
The pine wood nematode (PWN) Bursaphelenchus xylophilus is the pathogen that causes pine wilt disease (PWD), a devastating forest disease. PWN-associated bacteria may play a role in PWD. However, little is known about the endo-bacteria in PWN. We analyzed the diversity of endo-bacteria [...] Read more.
The pine wood nematode (PWN) Bursaphelenchus xylophilus is the pathogen that causes pine wilt disease (PWD), a devastating forest disease. PWN-associated bacteria may play a role in PWD. However, little is known about the endo-bacteria in PWN. We analyzed the diversity of endo-bacteria in nine isolates of PWNs from Pinus massoniana Lamb. in nine epidemic areas from three Chinese provinces by high-throughput sequencing of 16S rDNA and isolated and identified culturable endo-bacteria through construction of a 16S rDNA phylogenetic tree and Biolog microbial identification. We also examined the effects of endo-bacteria on PWN fecundity, antioxidant capacity, and virulence using sterile nematodes as a control. While the dominant endo-bacteria in PWNs from different regions exhibited no significant difference in the classification levels of class and genus, their proportions differed. Pseudomonas and Stenotrophomonas were highly abundant in all PWN isolates. A total of 15 endo-bacterial strains were successfully isolated and identified as six species: Stenotrophomonas maltophilia, Pseudomonas fluorescens, Kocuria palustris, Microbacterium testaceum, Rhizobium radiobacter, and Leifsonia aquatica. We also found that P. fluorescens significantly increased the egg production of PWN, and that both P. fluorescens and S. maltophilia enhanced the mobility of PWN under oxidative stress and reduced the content of reactive oxygen species by increasing antioxidant enzyme activity in PWN. These strains also accelerated the development of PWD, and P. fluorescens had a more beneficial effect on PWN than S. maltophilia. Diversity exists among the endo-bacteria in PWNs from different regions, and some endo-bacteria can promote PWN infestation by enhancing the fecundity and antioxidant capacity of the nematode. Our study contributes to clarifying the interaction between endo-bacteria and PWN. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

12 pages, 3418 KB  
Article
Isolation, Identification and Characterization of Endophytic Bacterium Rhizobium oryzihabitans sp. nov., from Rice Root with Biotechnological Potential in Agriculture
by Juanjuan Zhao, Xia Zhao, Junru Wang, Qi Gong, Xiaoxia Zhang and Guishan Zhang
Microorganisms 2020, 8(4), 608; https://doi.org/10.3390/microorganisms8040608 - 22 Apr 2020
Cited by 21 | Viewed by 6229
Abstract
A flagellate, rod–shaped bacterium designated strain M15T was isolated from rice roots. Phylogenetic analysis based on the sequences of the 16S rRNA, housekeeping genes and genomes showed that the isolate belonged to the genus Rhizobium, with the highest 16S rRNA similarity [...] Read more.
A flagellate, rod–shaped bacterium designated strain M15T was isolated from rice roots. Phylogenetic analysis based on the sequences of the 16S rRNA, housekeeping genes and genomes showed that the isolate belonged to the genus Rhizobium, with the highest 16S rRNA similarity to Rhizobium radiobacter LMG140T (99.64%) and Rhizobium pusense NRCPB10T (99.36%), respectively. The complete genome of the strain M15T has a 59.28% G+C content, and the highest average nucleotide identity (ANI) and DNA-DNA relatedness (DDH) values were obtained with R. radiobacter LMG140T (88.11%, 54.80%), R. pusense NRCPB10T (86.00%, 53.00%) and R. nepotum 39/7T (88.80%, 49.80%), respectively. Plant growth-promoting characteristics tests showed that the strain M15T produced siderophore, 1–aminocyclopropane–1–carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) and also produced some secondary metabolites according to the analysis of the comparative genomes. Based on the data mentioned above, we proposed that the strain M15T represented a novel species of the genus Rhizobium, named Rhizobium oryzihabitans sp. nov. The type strain is M15T (=JCM 32903T  = ACCC 60121T), and the strain M15T can be a novel biofertilizer Rhizobium to reduce the use of synthetic fertilizers for plant growth promotion. Full article
(This article belongs to the Special Issue Microbial Isolation and Characterization)
Show Figures

Figure 1

14 pages, 2631 KB  
Article
Microbial Ecology Evaluation of an Iberian Pig Processing Plant through Implementing SCH Sensors and the Influence of the Resident Microbiota on Listeria monocytogenes
by Anne-Sophie Hascoët, Carolina Ripolles-Avila, Alfons Eduard Guerrero-Navarro and José Juan Rodríguez-Jerez
Appl. Sci. 2019, 9(21), 4611; https://doi.org/10.3390/app9214611 - 30 Oct 2019
Cited by 22 | Viewed by 3356
Abstract
There is a whole community of microorganisms capable of surviving the cleaning and disinfection processes in the food industry. These persistent microorganisms can enhance or inhibit biofilm formation and the proliferation of foodborne pathogens. Cleaning and disinfection protocols will never reduce the contamination [...] Read more.
There is a whole community of microorganisms capable of surviving the cleaning and disinfection processes in the food industry. These persistent microorganisms can enhance or inhibit biofilm formation and the proliferation of foodborne pathogens. Cleaning and disinfection protocols will never reduce the contamination load to 0; however, it is crucial to know which resident species are present and the risk they represent to pathogens, such as Listeria monocytogenes, as they can be further used as a complementary control strategy. The aim of this study was to evaluate the resident surface microbiota in an Iberian pig processing plant after carrying out the cleaning and disinfection processes. To do so, surface sensors were implemented, sampled, and evaluated by culture plate count. Further, isolated microorganisms were identified through biochemical tests. The results show that the surfaces are dominated by Bacillus spp., Pseudomonas spp., different enterobacteria, Mannheimia haemolytica, Rhizobium radiobacter, Staphylococcus spp., Aeromonas spp., lactic acid bacteria, and yeasts and molds. Moreover, their probable relationship with the presence of L. monocytogenes in three areas of the plant is also explained. Further studies of the resident microbiota and their interaction with pathogens such as L. monocytogenes are required. New control strategies that promote the most advantageous profile of microorganisms in the resident microbiota could be a possible alternative for pathogen control in the food industry. To this end, the understanding of the resident microbiota on the surfaces of the food industry and its relation with pathogen presence is crucial. Full article
(This article belongs to the Special Issue Biofilms in Focus: A Threat to Foods)
Show Figures

Figure 1

11 pages, 190 KB  
Article
Microbiologically Contaminated and Over-Preserved Cosmetic Products According Rapex 2008–2014
by Edlira Neza and Marisanna Centini
Cosmetics 2016, 3(1), 3; https://doi.org/10.3390/cosmetics3010003 - 30 Jan 2016
Cited by 66 | Viewed by 32330
Abstract
We investigated the Rapid Alert System (RAPEX) database from January 2008 until week 26 of 2014 to give information to consumers about microbiologically contaminated cosmetics and over-preserved cosmetic products. Chemical risk was the leading cause of the recalls (87.47%). Sixty-two cosmetic products (11.76%) [...] Read more.
We investigated the Rapid Alert System (RAPEX) database from January 2008 until week 26 of 2014 to give information to consumers about microbiologically contaminated cosmetics and over-preserved cosmetic products. Chemical risk was the leading cause of the recalls (87.47%). Sixty-two cosmetic products (11.76%) were recalled because they were contaminated with pathogenic or potentially pathogenic microorganisms. Pseudomonas aeruginosa was the most frequently found microorganism. Other microorganisms found were: Mesophilic aerobic microorganisms, Staphylococcus aureus, Candida albicans, Enterococcus spp., Enterobacter cloacae, Enterococcus faecium, Enterobacter gergoviae, Rhizobium radiobacter, Burkholderia cepacia, Serratia marcescens, Achromabacter xylosoxidans, Klebsiella oxytoca, Bacillus firmus, Pantoea agglomerans, Pseudomonas putida, Klebsiella pneumoniae and Citrobacter freundii. Nine cosmetic products were recalled because they contained methylisothiazolinone (0.025%–0.36%), benzalkonium chloride (1%), triclosan (0.4%) in concentrations higher than the limits allowed by European Regulation 1223/2009. Fifteen products were recalled for the presence of methyldibromo glutaronitrile, a preservative banned for use in cosmetics. Thirty-two hair treatment products were recalled because they contained high concentrations of formaldehyde (0.3%–25%). Full article
Back to TopTop