Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = RNA-peptide world

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1473 KiB  
Perspective
Virus-First Theory Revisited: Bridging RNP-World and Cellular Life
by Francisco Prosdocimi and Savio Torres de Farias
Microbiol. Res. 2025, 16(7), 154; https://doi.org/10.3390/microbiolres16070154 - 7 Jul 2025
Viewed by 1042
Abstract
The virus-first theory presents a model in which viral lineages emerged before cells. This proposal aims to give the theory greater relevance by offering a plausible evolutionary framework that explains both (i) the origin of viruses from prebiotic chemistry and (ii) how viruses [...] Read more.
The virus-first theory presents a model in which viral lineages emerged before cells. This proposal aims to give the theory greater relevance by offering a plausible evolutionary framework that explains both (i) the origin of viruses from prebiotic chemistry and (ii) how viruses contributed to the emergence of cells. Here, we propose that viruses should be understood as a distinct class of ribonucleoprotein (RNP) systems, some of which evolved directly from the RNP-world. In our model, simple progenotes produced capsid-like particles through the evolution of a single gene encoding a self-assembling peptide. This allowed the formation of icosahedral shells around RNA genomes, as observed today in certain viral families whose capsids consist of ~60 identical subunits derived from a single gene product. These early capsids enabled mobility and protection, representing key intermediates toward biological complexity. Over time, some of those populations acquired additional peptides and evolved more elaborate architectures. Finally, the incorporation of lipid-binding domains in those capsid-like peptides allowed the formation of proteolipidic membranes akin to those found in modern cells. This model provides a gradualistic and logically coherent evolutionary path from the RNP-world to the emergence of cellular life, emphasizing the foundational role of viruses in early evolution. Full article
Show Figures

Figure 1

21 pages, 9971 KiB  
Article
Traces of a Primitive RNA Ring in Current Genomes
by Jacques Demongeot
Biology 2025, 14(5), 538; https://doi.org/10.3390/biology14050538 - 12 May 2025
Viewed by 416
Abstract
(1) Background: Previous theoretical studies have provided arguments for the existence of a circular or hairpin RNA that could have served as a primitive informational and functional molecule at the origin of life. The present article consists of searching in current genomes for [...] Read more.
(1) Background: Previous theoretical studies have provided arguments for the existence of a circular or hairpin RNA that could have served as a primitive informational and functional molecule at the origin of life. The present article consists of searching in current genomes for RNAs closest to this primitive RNA in terms of the occurrence of similar nucleotide motifs. (2) Methods: In searching for the smallest possible RNA capable of interacting with amino acids in the construction of the peptides of the primitive living world, we found a circular docosamer RNA molecule (length 22), which we called AL (for ALpha or Archetypal Loop). Then, we started to systematically track AL relics in current genomes in the form of motifs like pentamers or pairs of consecutive codons in common with AL. (3) Results: The sequence correspondence between AL and RNA sequences of organisms from different kingdoms of life (Archaea, Bacteria, and Eukarya) was found with high statistical significance, with a frequency gradient depending on both the antiquity of the species and the functional necessity of the genes. (4) Conclusions: Considering the suitability of AL as a candidate for being a primitive sequence, and the evolution of the different species considered, we can consider the AL RNA as a possible actor that favored the appearance of life on Earth. Full article
(This article belongs to the Section Theoretical Biology and Biomathematics)
Show Figures

Figure 1

18 pages, 5182 KiB  
Review
Evolutionary Routes to Modern Metabolic Pathways
by Alberto Vázquez-Salazar and Israel Muñoz-Velasco
Macromol 2025, 5(2), 23; https://doi.org/10.3390/macromol5020023 - 8 May 2025
Viewed by 2402
Abstract
Metabolism, the network of biochemical reactions that powers life, arose under conditions radically different from those on Earth today. Investigating its origins reveals how initially simple chemical processes gradually integrated nucleic acid and then protein catalysts, becoming progressively more complex and regulated until [...] Read more.
Metabolism, the network of biochemical reactions that powers life, arose under conditions radically different from those on Earth today. Investigating its origins reveals how initially simple chemical processes gradually integrated nucleic acid and then protein catalysts, becoming progressively more complex and regulated until they evolved into the enzyme-rich systems observed in modern organisms. Here, we integrate multiple perspectives on the origin of metabolism, focusing primarily on an evolutionary trajectory from an RNA-based world, where ribozymes, metal ions, coenzymes, small peptides, and other small organic molecules worked in concert, to enzyme-driven metabolic networks. We also address the longstanding debates on whether these early metabolic pathways were largely autotrophic or heterotrophic, and consider so-called “pre-metabolisms” (non-enzymatic networks) as an alternative conceptual framework. We discuss key examples such as the Wood–Ljungdahl (W–L) pathway and the reverse tricarboxylic acid (TCA) cycle, both posited to function under early Earth conditions. Finally, we examine how the environment (e.g., minerals, clays, hydrothermal vents) shaped early metabolism, describe unresolved questions about the Last Common Ancestor’s catalytic repertoire and propose future directions that link geochemical insights with molecular biology and synthetic approaches. Full article
Show Figures

Graphical abstract

22 pages, 3808 KiB  
Review
Natural and Designed Cyclic Peptides as Potential Antiviral Drugs to Combat Future Coronavirus Outbreaks
by Hilarie Uwamahoro, Willard E. Collier, Toufic O. Nashar, Jesse M. Jaynes, Desmond G. Mortley, Cheryl G. Davis, Getrude G. Kanyairita, Eslam F. Abdelazim, Jean Francois Regis Igiramaboko, Concorde Habineza, Devotha Tumushimiyimana, Umuraza Noella Rutayisire, Yasmin A. Davis and Kamora L. Renard
Molecules 2025, 30(8), 1651; https://doi.org/10.3390/molecules30081651 - 8 Apr 2025
Viewed by 2286
Abstract
The COVID-19 pandemic has underscored the need for effective and affordable antiviral drugs. Anthropogenic activities have increased interactions among humans, animals, and wildlife, contributing to the emergence of new and re-emerging viral diseases. RNA viruses pose significant challenges due to their rapid mutation [...] Read more.
The COVID-19 pandemic has underscored the need for effective and affordable antiviral drugs. Anthropogenic activities have increased interactions among humans, animals, and wildlife, contributing to the emergence of new and re-emerging viral diseases. RNA viruses pose significant challenges due to their rapid mutation rates, high transmissibility, and ability to adapt to host immune responses and antiviral treatments. The World Health Organization has identified several diseases (COVID-19, Ebola, Marburg, Zika, and others), all caused by RNA viruses, designated as being of priority concern as potential causes of future pandemics. Despite advances in antiviral treatments, many viruses lack specific therapeutic options, and more importantly, there is a paucity of broad-spectrum antiviral drugs. Additionally, the high costs of current treatments such as Remdesivir and Paxlovid highlight the need for more affordable antiviral drugs. Cyclic peptides from natural sources or designed through molecular modeling have shown promise as antiviral drugs with stability, low toxicity, high target specificity, and low antiviral resistance properties. This review emphasizes the urgent need to develop specific and broad-spectrum antiviral drugs and highlights cyclic peptides as a sustainable solution to combat future pandemics. Further research into these compounds could provide a new weapon to combat RNA viruses and address the gaps in current antiviral drug development. Full article
(This article belongs to the Special Issue Phytochemistry, Human Health and Molecular Mechanisms)
Show Figures

Graphical abstract

25 pages, 4144 KiB  
Article
A Puccinia striiformis f. sp. tritici Effector with DPBB Domain Suppresses Wheat Defense
by Raheel Asghar, Yu Cheng, Nan Wu and Mahinur S. Akkaya
Plants 2025, 14(3), 435; https://doi.org/10.3390/plants14030435 - 2 Feb 2025
Cited by 1 | Viewed by 1173
Abstract
Wheat (Triticum aestivum L.) is a primary crop globally. Among the numerous pathogens affecting wheat production, Puccinia striiformis f. sp. tritici (Pst) is a significant biotic stress agent and poses a major threat to world food security by causing stripe [...] Read more.
Wheat (Triticum aestivum L.) is a primary crop globally. Among the numerous pathogens affecting wheat production, Puccinia striiformis f. sp. tritici (Pst) is a significant biotic stress agent and poses a major threat to world food security by causing stripe rust or yellow rust disease. Understanding the molecular basis of plant–pathogen interactions is crucial for developing new means of disease management. It is well established that the effector proteins play a pivotal role in pathogenesis. Therefore, studying effector proteins has become an important area of research in plant biology. Our previous work identified differentially expressed candidate secretory effector proteins of stripe rust based on transcriptome sequencing data from susceptible wheat (Avocet S) and resistant wheat (Avocet YR10) infected with Pst. Among the secreted effector proteins, PSTG_14090 contained an ancient double-psi beta-barrel (DPBB) fold, which is conserved in the rare lipoprotein A (RlpA) superfamily. This study investigated the role of PSTG_14090 in plant immune responses, which encodes a protein, here referred to as Pst-DPBB, having 131 amino acids with a predicted signal peptide (SP) of 19 amino acids at the N-terminal end, and the DNA sequence of this effector is highly conserved among different stripe rust races. qRT-PCR analysis indicated that expression levels are upregulated during the early stages of infection. Subcellular localization studies in Nicotiana benthamiana leaves and wheat protoplasts revealed that it is distributed in the cytoplasm, nucleus, and apoplast. We demonstrated that Pst-DPBB negatively regulates the immune response by functioning in various compartments of the plant cells. Based on Co-IP and structural predictions and putative interaction analyses by AlphaFold 3, we propose the probable biological function(s). Pst-DPBB behaves as a papain inhibitor of wheat cysteine protease; Pst-DPBB has high structural homology to kiwellin, which is known to interact with chorismate mutase, suggesting that Pst-DPBB inhibits the native function of the host chorismate mutase involved in salicylic acid synthesis. The DPBB fold is also known to interact with DNA and RNA, which may suggest its possible role in regulating the host gene expression. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Graphical abstract

14 pages, 4085 KiB  
Article
Phenotypic and Complete Reference Whole Genome Sequence Analyses of Two Paenibacillus spp. Isolates from a Gray Wolf (Canis lupus) Gastrointestinal Tract
by Jessika L. Bryant, Jennifer McCabe, C. Cristoph Klews, MiCayla Johnson, Ariel N. Atchley, Thomas W. Cousins, Maya Barnard-Davidson, Kristina M. Smith, Mark R. Ackermann, Michael Netherland, Nur A. Hasan, Peter A. Jordan, Evan S. Forsythe, Patrick N. Ball and Bruce S. Seal
Vet. Sci. 2025, 12(1), 51; https://doi.org/10.3390/vetsci12010051 - 13 Jan 2025
Cited by 1 | Viewed by 1490
Abstract
Inflammatory bowel disease (IBD) is increasing among mammals around the world, and domestic dogs are no exception. There is no approved cure for canine IBD with limited treatment options. Novel probiotic bacteria discovery from free-ranging animals for the treatment of IBD in domestic [...] Read more.
Inflammatory bowel disease (IBD) is increasing among mammals around the world, and domestic dogs are no exception. There is no approved cure for canine IBD with limited treatment options. Novel probiotic bacteria discovery from free-ranging animals for the treatment of IBD in domestic pets can likely yield promising probiotic candidates. Consequently, the overall aim was to isolate bacteria from free-ranging animals that could potentially be utilized as novel probiotics. Two bacteria identified as unique Paenibacillus spp. strains by small ribosomal RNA (16S) gene sequencing were isolated from the gastrointestinal tract of a North American Gray Wolf (Canis lupus). The bacteria were typed as Gram-variable, and both were catalase/oxidase positive as well as sensitive to commonly used antibiotics. The bacteria digested complex carbohydrates and lipids by standard assays. The isolated bacteria also inhibited the growth of Staphylococcus aureus and Micrococcus luteus. The whole genome sequence (WGS) length of bacterial isolate ClWae17B was 6,939,193 bp, while ClWae19 was 7,032,512 bp, both similar in size to other Paenibacillus spp. The genomes of both bacteria encoded enzymes involved with the metabolism of complex starches and lipids, such as lyases and pectinases, along with encoding antimicrobials such as lanthipeptides, lasso peptides, and cyclic-lactone-autoinducers. No pernicious virulence genes were identified in the WGS of either bacterial isolate. Phylogenetically, the most closely related bacteria based on 16S gene sequences and WGS were P. taichungensis for ClWae17B and P. amylolyticus for ClWae19. WGS analyses and phenotypic assays supported the hypothesis that the isolates described constitute two novel candidate probiotic bacteria for potential use in dogs. Full article
Show Figures

Graphical abstract

14 pages, 1641 KiB  
Article
The PpPep2-Triggered PTI-like Response in Peach Trees Is Mediated by miRNAs
by Laura Foix, Maria Pla, Beatriz Martín-Mur, Anna Esteve-Codina and Anna Nadal
Int. J. Mol. Sci. 2024, 25(23), 13099; https://doi.org/10.3390/ijms252313099 - 5 Dec 2024
Viewed by 967
Abstract
Plant diseases diminish crop yields and put the world’s food supply at risk. Plant elicitor peptides (Peps) are innate danger signals inducing defense responses both naturally and after external application onto plants. Pep-triggered defense networks are compatible with pattern-triggered immunity (PTI). Nevertheless, in [...] Read more.
Plant diseases diminish crop yields and put the world’s food supply at risk. Plant elicitor peptides (Peps) are innate danger signals inducing defense responses both naturally and after external application onto plants. Pep-triggered defense networks are compatible with pattern-triggered immunity (PTI). Nevertheless, in complex regulatory pathways, there is crosstalk among different signaling pathways, involving noncoding RNAs in the natural response to pathogen attack. Here, we used Prunus persica, PpPep2 and a miRNA-Seq approach to show for the first time that Peps regulate, in parallel with a set of protein-coding genes, a set of plant miRNAs (~15%). Some PpPep2-regulated miRNAs have been described to participate in the response to pathogens in various plant–pathogen systems. In addition, numerous predicted target mRNAs of PpPep2-regulated miRNAs are themselves regulated by PpPep2 in peach trees. As an example, peach miRNA156 and miRNA390 probably have a role in plant development regulation under stress conditions, while others, such as miRNA482 and miRNA395, would be involved in the regulation of resistance (R) genes and sulfate-mediated protection against oxygen free radicals, respectively. This adds to the established role of Peps in triggering plant defense systems by incorporating the miRNA regulatory network and to the possible use of Peps as sustainable phytosanitary products. Full article
(This article belongs to the Special Issue Plant Pathogen Interactions: 2nd Edition)
Show Figures

Figure 1

41 pages, 38449 KiB  
Article
Metabolome and Metagenome Integration Unveiled Synthesis Pathways of Novel Antioxidant Peptides in Fermented Lignocellulosic Biomass of Palm Kernel Meal
by Hammad Qamar, Rong He, Yuanfei Li, Min Song, Dun Deng, Yiyan Cui, Miao Yu and Xianyong Ma
Antioxidants 2024, 13(10), 1253; https://doi.org/10.3390/antiox13101253 - 17 Oct 2024
Cited by 3 | Viewed by 1988
Abstract
Approximately one-third of the entire world’s food resources are deemed to be wasted. Palm kernel meal (PKM), a product that is extensively generated by the palm oil industry, exhibits a unique nutrient-rich composition. However, its recycling is seldom prioritized due to numerous factors. [...] Read more.
Approximately one-third of the entire world’s food resources are deemed to be wasted. Palm kernel meal (PKM), a product that is extensively generated by the palm oil industry, exhibits a unique nutrient-rich composition. However, its recycling is seldom prioritized due to numerous factors. To evaluate the impact of enzymatic pretreatment and Lactobacillus plantarum and Lactobacillus reuteri fermentation upon the antioxidant activity of PKM, we implemented integrated metagenomics and metabolomics approaches. The substantially enhanced (p < 0.05) property of free radicals scavenging, as well as total flavonoids and polyphenols, demonstrated that the biotreated PKM exhibited superior antioxidant capacity. Non-targeted metabolomics disclosed that the Lactobacillus fermentation resulted in substantial (p < 0.05) biosynthesis of 25 unique antioxidant biopeptides, along with the increased (p < 0.05) enrichment ratio of the isoflavonoids and secondary metabolites biosynthesis pathways. The 16sRNA sequencing and correlation analysis revealed that Limosilactobacillus reuteri, Pediococcus acidilactici, Lacticaseibacillus paracasei, Pediococcus pentosaceus, Lactiplantibacillus plantarum, Limosilactobacillus fermentum, and polysaccharide lyases had significantly dominated (p < 0.05) proportions in PMEL, and these bacterial species were strongly (p < 0.05) positively interrelated with antioxidants peptides. Fermented PKM improves nutritional value by enhancing beneficial probiotics, enzymes, and antioxidants and minimizing anti-nutritional factors, rendering it an invaluable feed ingredient and gut health promoter for animals, multifunctional food elements, or as an ingredient in sustainable plant-based diets for human utilization, and functioning as a culture substrate in the food sector. Full article
(This article belongs to the Special Issue Methodologies for Improving Antioxidant Properties and Absorption)
Show Figures

Figure 1

13 pages, 928 KiB  
Review
On the Re-Creation of Protoribosome Analogues in the Lab
by Ilana Agmon
Int. J. Mol. Sci. 2024, 25(9), 4960; https://doi.org/10.3390/ijms25094960 - 2 May 2024
Cited by 2 | Viewed by 1479
Abstract
The evolution of the translation system is a fundamental issue in the quest for the origin of life. A feasible evolutionary scenario necessitates the autonomous emergence of a protoribosome capable of catalyzing the synthesis of the initial peptides. The peptidyl transferase center (PTC) [...] Read more.
The evolution of the translation system is a fundamental issue in the quest for the origin of life. A feasible evolutionary scenario necessitates the autonomous emergence of a protoribosome capable of catalyzing the synthesis of the initial peptides. The peptidyl transferase center (PTC) region in the modern ribosomal large subunit is believed to retain a vestige of such a prebiotic non-coded protoribosome, which would have self-assembled from random RNA chains, catalyzed peptide bond formation between arbitrary amino acids, and produced short peptides. Recently, three research groups experimentally demonstrated that several distinct dimeric constructs of protoribosome analogues, derived predicated on the approximate 2-fold rotational symmetry inherent in the PTC region, possess the ability to spontaneously fold, dimerize, and catalyze the formation of peptide bonds and of short peptides. These dimers are examined, aiming at retrieving information concerned with the characteristics of a prebiotic protoribosome. The analysis suggests preconditions for the laboratory re-creation of credible protoribosome analogues, including the preference of a heterodimer protoribosome, contradicting the common belief in the precedence of homodimers. Additionally, it derives a dynamic process which possibly played a role in the spontaneous production of the first bio-catalyzed peptides in the prebiotic world. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 4342 KiB  
Article
Traumatic Brain Injury Induces Nociceptin/Orphanin FQ and Nociceptin Opioid Peptide Receptor Expression within 24 Hours
by Omar N. Al Yacoub, Yong Zhang, Panini S. Patankar and Kelly M. Standifer
Int. J. Mol. Sci. 2024, 25(3), 1658; https://doi.org/10.3390/ijms25031658 - 29 Jan 2024
Cited by 2 | Viewed by 1781
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and disability around the world, for which no treatment has been found. Nociceptin/Orphanin FQ (N/OFQ) and the nociceptin opioid peptide (NOP) receptor are rapidly increased in response to fluid percussion, stab injury, and [...] Read more.
Traumatic brain injury (TBI) is a major cause of mortality and disability around the world, for which no treatment has been found. Nociceptin/Orphanin FQ (N/OFQ) and the nociceptin opioid peptide (NOP) receptor are rapidly increased in response to fluid percussion, stab injury, and controlled cortical impact (CCI) TBI. TBI-induced upregulation of N/OFQ contributes to cerebrovascular impairment, increased excitotoxicity, and neurobehavioral deficits. Our objective was to identify changes in N/OFQ and NOP receptor peptide, protein, and mRNA relative to the expression of injury markers and extracellular regulated kinase (ERK) 24 h following mild (mTBI) and moderate TBI (ModTBI) in wildtype (WT) and NOP receptor-knockout (KO) rats. N/OFQ was quantified by radioimmunoassay, mRNA expression was assessed using real-time PCR and protein levels were determined by immunoblot analysis. This study revealed increased N/OFQ mRNA and peptide levels in the CSF and ipsilateral tissue of WT, but not KO, rats 24 h post-TBI; NOP receptor mRNA increased after ModTBI. Cofilin-1 activation increased in the brain tissue of WT but not KO rats, ERK activation increased in all rats following ModTBI; no changes in injury marker levels were noted in brain tissue at this time. In conclusion, this study elucidates transcriptional and translational changes in the N/OFQ-NOP receptor system relative to TBI-induced neurological deficits and initiation of signaling cascades that support the investigation of the NOP receptor as a therapeutic target for TBI. Full article
(This article belongs to the Special Issue Molecular and Physiological Mechanisms of Traumatic Brain Injury)
Show Figures

Figure 1

32 pages, 10331 KiB  
Article
From the RNA-Peptide World: Prebiotic Reaction Conditions Compatible with Lipid Membranes for the Formation of Lipophilic Random Peptides in the Presence of Short Oligonucleotides, and More
by Augustin Lopez, Antoine Vauchez, Ghinwa Ajram, Anastasiia Shvetsova, Gabrielle Leveau, Michele Fiore and Peter Strazewski
Life 2024, 14(1), 108; https://doi.org/10.3390/life14010108 - 9 Jan 2024
Cited by 2 | Viewed by 3290
Abstract
Deciphering the origins of life on a molecular level includes unravelling the numerous interactions that could occur between the most important biomolecules being the lipids, peptides and nucleotides. They were likely all present on the early Earth and all necessary for the emergence [...] Read more.
Deciphering the origins of life on a molecular level includes unravelling the numerous interactions that could occur between the most important biomolecules being the lipids, peptides and nucleotides. They were likely all present on the early Earth and all necessary for the emergence of cellular life. In this study, we intended to explore conditions that were at the same time conducive to chemical reactions critical for the origins of life (peptide–oligonucleotide couplings and templated ligation of oligonucleotides) and compatible with the presence of prebiotic lipid vesicles. For that, random peptides were generated from activated amino acids and analysed using NMR and MS, whereas short oligonucleotides were produced through solid-support synthesis, manually deprotected and purified using HPLC. After chemical activation in prebiotic conditions, the resulting mixtures were analysed using LC-MS. Vesicles could be produced through gentle hydration in similar conditions and observed using epifluorescence microscopy. Despite the absence of coupling or ligation, our results help to pave the way for future investigations on the origins of life that may gather all three types of biomolecules rather than studying them separately, as it is still too often the case. Full article
(This article belongs to the Special Issue Feature Papers in Origins of Life)
Show Figures

Graphical abstract

15 pages, 6932 KiB  
Article
Dual RNA-Seq Reveals Temperature-Mediated Gene Reprogramming and Molecular Crosstalk between Grapevine and Lasiodiplodia theobromae
by Junbo Peng, Yonghua Li, Qikai Xing, Caiping Huang and Jiye Yan
J. Fungi 2023, 9(12), 1197; https://doi.org/10.3390/jof9121197 - 14 Dec 2023
Viewed by 1888
Abstract
High temperatures associated with a fluctuating climate profoundly accelerate the occurrence of a myriad of plant diseases around the world. A comprehensive insight into how plants respond to pathogenic microorganisms under high-temperature stress is required for plant disease management, whereas the underlying mechanisms [...] Read more.
High temperatures associated with a fluctuating climate profoundly accelerate the occurrence of a myriad of plant diseases around the world. A comprehensive insight into how plants respond to pathogenic microorganisms under high-temperature stress is required for plant disease management, whereas the underlying mechanisms behind temperature-mediated plant immunity and pathogen pathogenicity are still unclear. Here, we evaluated the effect of high temperature on the development of grapevine canker disease and quantified the contribution of temperature variation to the gene transcription reprogramming of grapevine and its pathogenic agent Lasiodiplodia theobromae using a dual RNA-seq approach. The results showed that both grapevine and the pathogen displayed altered transcriptomes under different temperatures, and even the transcription of a plethora of genes from the two organisms responded in different directions and magnitudes. The transcription variability that arose due to temperature oscillation allowed us to identify a total of 26 grapevine gene modules and 17 fungal gene modules that were correlated with more than one gene module of the partner organism, which revealed an extensive web of plant–pathogen gene reprogramming during infection. More importantly, we identified a set of temperature-responsive genes that were transcriptionally orchestrated within the given gene modules. These genes are predicted to be involved in multiple cellular processes including protein folding, stress response regulation, and carbohydrate and peptide metabolisms in grapevine and porphyrin- and pteridine-containing compound metabolisms in L. theobromae, implying that in response to temperature oscillation, a complex web of signaling pathways in two organism cells is activated during infection. This study describes a co-transcription network of grapevine and L. theobromae in the context of considering temperature variation, which provides novel insights into deciphering the molecular mechanisms underlying temperature-modulated disease development. Full article
Show Figures

Figure 1

10 pages, 448 KiB  
Review
Cardiac-Targeting Peptide: From Discovery to Applications
by Daniella Sahagun and Maliha Zahid
Biomolecules 2023, 13(12), 1690; https://doi.org/10.3390/biom13121690 - 23 Nov 2023
Cited by 7 | Viewed by 3213
Abstract
Despite significant strides in prevention, diagnosis, and treatment, cardiovascular diseases remain the number one cause of mortality in the United States, with rates climbing at an alarming rate in the developing world. Targeted delivery of therapeutics to the heart has been a lofty [...] Read more.
Despite significant strides in prevention, diagnosis, and treatment, cardiovascular diseases remain the number one cause of mortality in the United States, with rates climbing at an alarming rate in the developing world. Targeted delivery of therapeutics to the heart has been a lofty goal to achieve with strategies ranging from direct intra-cardiac or intra-pericardial delivery, intra-coronary infusion, to adenoviral, lentiviral, and adeno-associated viral vectors which have preference, if not complete cardio-selectivity, for cardiac tissue. Cell-penetrating peptides (CPP) are 5–30-amino-acid-long peptides that are able to breach cell membrane barriers while carrying cargoes up to several times their size, in an intact functional form. Identified nearly three decades ago, the first of these CPPs came from the HIV coat protein transactivator of transcription. Although a highly efficient CPP, its clinical utility is limited by its robust ability to cross any cell membrane barrier, including crossing the blood–brain barrier and transducing neuronal tissue non-specifically. Several strategies have been utilized to identify cell- or tissue-specific CPPs, one of which is phage display. Using this latter technique, we identified a cardiomyocyte-targeting peptide (CTP) more than a decade ago, a finding that has been corroborated by several independent labs across the world that have utilized CTP for a myriad of different purposes in pre-clinical animal models. The goal of this publication is to provide a comprehensive review of the identification, validation, and application of CTP, and outline its potential in diagnostic and therapeutic applications especially in the field of targeted RNA interference. Full article
(This article belongs to the Special Issue Pharmacology of Cardiovascular Disease)
Show Figures

Figure 1

15 pages, 2850 KiB  
Review
Linking Adiponectin and Its Receptors to Age-Related Macular Degeneration (AMD)
by Mayank Choubey, Munichandra B. Tirumalasetty, Nalini S. Bora and Puran S. Bora
Biomedicines 2023, 11(11), 3044; https://doi.org/10.3390/biomedicines11113044 - 14 Nov 2023
Cited by 4 | Viewed by 3241
Abstract
In recent years, there has been a captivating focus of interest in elucidating the intricate crosstalk between adiponectin (APN), a versatile fat-associated adipokine and ocular pathologies. Unveiling the intricate relationship between adipocytokine APN and its receptors (AdipoRs) with aging eye disorders has emerged [...] Read more.
In recent years, there has been a captivating focus of interest in elucidating the intricate crosstalk between adiponectin (APN), a versatile fat-associated adipokine and ocular pathologies. Unveiling the intricate relationship between adipocytokine APN and its receptors (AdipoRs) with aging eye disorders has emerged as a fascinating frontier in medical research. This review article delves into this connection, illuminating the hidden influence of APN on retinal health. This comprehensive review critically examines the latest findings and breakthroughs that underscore the pivotal roles of APN/AdipoRs signaling in maintaining ocular homeostasis and protecting against eye ailments. Here, we meticulously explore the intriguing mechanisms by which APN protein influences retinal function and overall visual acuity. Drawing from an extensive array of cutting-edge studies, the article highlights APN’s multifaceted functions, ranging from anti-inflammatory properties and oxidative stress reduction to angiogenic regulation within retinal and macula tissues. The involvement of APN/AdipoRs in mediating these effects opens up novel avenues for potential therapeutic interventions targeting prevalent aging eye conditions. Moreover, this review unravels the interplay between APN signaling pathways and age-related macular degeneration (AMD). The single-cell RNA-seq results validate the expression of both the receptor isoforms (AdipoR1/R2) in retinal cells. The transcriptomic analysis showed lower expression of AdipoR1/2 in dry AMD pathogenesis compared to healthy subjects. The inhibitory adiponectin peptide (APN1) demonstrated over 75% suppression of CNV, whereas the control peptide did not exert any inhibitory effect on choroidal neovascularization (CNV). The elucidation of these relationships fosters a deeper understanding of adipose tissue’s profound influence on ocular health, presenting new prospects for personalized treatments and preventative measures. Because APN1 inhibits CNV and leakage, it can be used to treat human AMD, although the possibility to treat human AMD is in the early stage and more clinical research is needed. In conclusion, this review provides a captivating journey into the enthralling world of APN, intertwining the realms of adipose biology and ophthalmology in aging. Full article
(This article belongs to the Special Issue 10th Anniversary of Biomedicines—Recent Advances on Adipokines)
Show Figures

Figure 1

24 pages, 4245 KiB  
Article
COVID-19 Incidence Proportion as a Function of Regional Testing Strategy, Vaccination Coverage, and Vaccine Type
by Areg A. Totolian, Viacheslav S. Smirnov, Alexei A. Krasnov, Edward S. Ramsay, Vladimir G. Dedkov and Anna Y. Popova
Viruses 2023, 15(11), 2181; https://doi.org/10.3390/v15112181 - 30 Oct 2023
Cited by 4 | Viewed by 1897
Abstract
Introduction: The COVID-19 pandemic has become a serious challenge for humanity almost everywhere globally. Despite active vaccination around the world, the incidence proportion in different countries varies significantly as of May 2022. The reason may be a combination of demographic, immunological, and epidemiological [...] Read more.
Introduction: The COVID-19 pandemic has become a serious challenge for humanity almost everywhere globally. Despite active vaccination around the world, the incidence proportion in different countries varies significantly as of May 2022. The reason may be a combination of demographic, immunological, and epidemiological factors. The purpose of this study was to analyze possible relationships between COVID-19 incidence proportion in the population and the types of SARS-CoV-2 vaccines used in different countries globally, taking into account demographic and epidemiological factors. Materials and methods: An initial database was created of demographic and immunoepidemiological information about the COVID-19 situation in 104 countries collected from published official sources and repository data. The baseline included, for each country, population size and density; SARS-CoV-2 testing coverage; vaccination coverage; incidence proportion; and a list of vaccines that were used, including their relative share among all vaccinations. Subsequently, the initial data set was stratified by population and vaccination coverage. The final data set was subjected to statistical processing both in general and taking into account population testing coverage. Results: After formation of the final data set (including 53 countries), it turned out that reported COVID-19 case numbers correlated most strongly with testing coverage and the proportions of vaccine types used, specifically, mRNA (V1); vector (V2); peptide/protein (V3); and whole-virion/inactivated (V4). Due to the fact that an inverse correlation was found between ‘reported COVID-19 case numbers’ with V2, V3, and V4, these three vaccine types were also combined into one analytic group, ‘non-mRNA group’ vaccines (Vnmg). When the relationship between vaccine type and incidence proportion was examined, minimum incidence proportion was noted at V1:Vnmg ratios (%:%) from 0:100 to 30:70. Maximum incidence proportion was seen with V1:Vnmg from 80:20 to 100:0. On the other hand, we have shown that the number of reported COVID-19 cases in different countries largely depends on testing coverage. To offset this factor, countries with low and extremely high levels of testing were excluded from the data set; it was then confirmed that the largest number of reported COVID-19 cases occurred in countries with a dominance of V1 vaccines. The fewest reported cases were seen in countries with a dominance of Vnmg vaccines. Conclusion: In this paper, we have shown for the first time that the level of reported COVID-19 incidence proportion depends not only on SARS-CoV-2 testing and vaccination coverage, which is quite logical, but probably also on the vaccine types used. With the same vaccination level and testing coverage, those countries that predominantly use vector and whole-virion vaccines feature incidence proportion that is significantly lower than countries that predominantly use mRNA vaccines. Full article
(This article belongs to the Collection Coronaviruses)
Show Figures

Figure 1

Back to TopTop