Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = Qinling orogen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5465 KiB  
Article
Molybdenite Re-Os Isotopic Ages of Two Late Mesozoic Giant Mo Deposits in the Eastern Qinling Orogenic Belt, Central China
by Yuanshuo Zhang, Li Yang, Herong Gui, Dejin Wang, Mengqiu He and Jun He
Minerals 2025, 15(8), 800; https://doi.org/10.3390/min15080800 - 30 Jul 2025
Viewed by 262
Abstract
Precise Re-Os isotopic ages of the Jinduicheng and Donggou Mo deposits in the East Qinling orogenic belt can shed light on the controversies about multiple-stage pulses of mineralization and further elucidate the genesis and metallogenic process of the deposits. In this study, we [...] Read more.
Precise Re-Os isotopic ages of the Jinduicheng and Donggou Mo deposits in the East Qinling orogenic belt can shed light on the controversies about multiple-stage pulses of mineralization and further elucidate the genesis and metallogenic process of the deposits. In this study, we propose two major events of Mo mineralization in this orogenic belt occurring during the Late Mesozoic: the early stage of 156–130 Ma and late stage of 122–114 Ma. Results of molybdenite Re-Os isotopic analysis reveal that the Jinduicheng deposit formed at 139.2 ± 2.9 Ma, while the Donggou deposit exhibited two-stage mineralization at 115.4 ± 1.6 Ma and 111.9 ± 1.3 Ma. These isotopic ages align with the spatiotemporal evolution of coeval ore-barren granites exposed in eastern Qinling, pointing to a close genetic relationship between the magmatism and mineralization that was controlled by the same tectonic activity, likely in a post-collisional setting. This highlights the multiple-stage Mo mineralization and provides evidence for further understanding the geodynamics and metallogenic process in the eastern Qinling orogenic belt. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

13 pages, 3716 KiB  
Article
Mineralogy and Preparation of High-Purity Quartz: A Case Study from Pegmatite in the Eastern Sector of the North Qinling Orogenic Belt
by Deshui Yu, Yameng Ma, Shoujing Wang, Chi Ma and Fushuai Wei
Minerals 2025, 15(8), 788; https://doi.org/10.3390/min15080788 - 27 Jul 2025
Viewed by 272
Abstract
High-purity quartz (HPQ), an indispensable industrial mineral, serves as a critical raw material for advanced technology sectors. Derived from natural quartz precursors through processing, HPQ preparation efficiency fundamentally depends on raw material selection. Two pegmatite samples (muscovite pegmatite and two-mica pegmatite) sampled from [...] Read more.
High-purity quartz (HPQ), an indispensable industrial mineral, serves as a critical raw material for advanced technology sectors. Derived from natural quartz precursors through processing, HPQ preparation efficiency fundamentally depends on raw material selection. Two pegmatite samples (muscovite pegmatite and two-mica pegmatite) sampled from the eastern sector of the North Qinling Orogenic Belt were investigated through a suite of analytical techniques, as well as processing and purification, to evaluate their potential as raw materials for high-purity quartz. Muscovite pegmatite is predominantly composed of quartz, plagioclase, K-feldspar, muscovite, and garnet, with accessory phases including limonite and kaolinite. However, in addition to quartz, plagioclase, K-feldspar, muscovite, garnet, and limonite, two-mica pegmatite contains minerals such as biotite and calcite. The fluid inclusions in both muscovite and two-mica pegmatite quartz are small, but the former has fewer fluid inclusions. Compared with muscovite pegmatite, surface discontinuity (i.e., cracks, pits, cavities) development is more pronounced in two-mica pegmatite purified quartz, which may be related to its high content of fluid inclusions. Following purification, the total concentration of trace elements decreased significantly. However, the concentrations of Al and Ti appeared to remain the same. Titanium enrichment in purified two-mica pegmatite quartz likely derives from biotite, while Na and Ca concentrations may be related to fluid inclusions or microscopic mineral inclusions. The trace element content (27.69 ppm) in muscovite pegmatite is lower than that (45.28 ppm) of two-mica pegmatite, we thus suggest that muscovite pegmatite quartz is more likely to have the potential to produce high-purity quartz. Full article
(This article belongs to the Special Issue Physicochemical Properties and Purification of Quartz Minerals)
Show Figures

Figure 1

29 pages, 9622 KiB  
Article
Provenance of the Upper Paleozoic Shihezi Formation in the Luonan Region of the Qinling Orogenic Belt and Its Tectonic Implications
by Yuliang Duan, Wenqi Pan, Xi Zhang, Zhengtao Zhang, Yi Ding, Ziwen Jiang, Zhichao Li, Lamao Meiduo, Weiran Zhao and Wenhou Li
Minerals 2025, 15(5), 549; https://doi.org/10.3390/min15050549 - 21 May 2025
Viewed by 320
Abstract
This study investigates the provenance of the Permian Shihezi Formation (Fm) siliciclastic sediments in the Luonan area, southern margin of the North China Block, which constrain the sediment sources and tectonic evolution of the basin. Our research investigates the heavy mineral characteristics, geochemical [...] Read more.
This study investigates the provenance of the Permian Shihezi Formation (Fm) siliciclastic sediments in the Luonan area, southern margin of the North China Block, which constrain the sediment sources and tectonic evolution of the basin. Our research investigates the heavy mineral characteristics, geochemical features, detrital zircon U-Pb geochronology, and Lu-Hf isotope tracing the provenance characteristics of the Shihezi Fm in this region. Zircon yielded three distinct U-Pb age groups as follows: 320–300 Ma, 1950–1850 Ma, and 2550–2450 Ma. The εHf(t) values of zircons ranged from −41 to 50, and the two–stage Hf model’s ages (TDM2) values are concentrated between 3940 Ma and 409 Ma, suggesting that magmatic sources likely derive from Early Archaean–Devonian crustal materials. The heavy mineral assemblages are primarily composed of zircon, leucoxene, and magnetite. Further geochemical analyses of the rocks indicate a diverse provenance area and a complex tectonic evolution. Taken together, these results suggest that the provenance of the Shihezi Fm is from the North China Block, with secondary contributions from the Qinling Orogenic Belt and the North Qilian Orogenic Belt. The provenance of Luonan shares similarities with the southern Ordos Basin. Investigating the provenance of the Luonan area along the southern margin of the North China Craton provides critical supplementary constraints for shedding light on the Late Paleozoic tectonothermal events in the Qinling Orogenic Belt. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

41 pages, 17061 KiB  
Article
Multiple Ecological Niche Modeling Reveals Niche Conservatism and Divergence in East Asian Yew (Taxus)
by Chuncheng Wang, Minqiu Wang, Shanshan Zhu, Xingtong Wu, Shaolong Yang, Yadan Yan and Yafeng Wen
Plants 2025, 14(7), 1094; https://doi.org/10.3390/plants14071094 - 1 Apr 2025
Cited by 1 | Viewed by 614
Abstract
Understanding ecological niche evolution patterns is crucial for elucidating biogeographic history and guiding biodiversity conservation. Taxus is a Tertiary relict gymnosperm with 11 lineages mainly distributed across East Asia, spanning from tropical to subarctic regions. However, the spatiotemporal dynamics of its ecological niche [...] Read more.
Understanding ecological niche evolution patterns is crucial for elucidating biogeographic history and guiding biodiversity conservation. Taxus is a Tertiary relict gymnosperm with 11 lineages mainly distributed across East Asia, spanning from tropical to subarctic regions. However, the spatiotemporal dynamics of its ecological niche evolution and the roles of ecological and geographical factors in lineage diversification, remain unclear. Using occurrence records, environmental data, and reconstructed phylogenies, we employed ensemble ecological niche models (eENMs), environmental principle components analysis (PCA-env), and phyloclimatic modeling to analyze niche similarity and evolution among 11 Taxus lineages. Based on reconstructed Bayesian trees and geographical distribution characteristics, we classified the eleven lineages into four clades: Northern (T. cuspidata), Central (T. chinensis, T. qinlingensis, and the Emei type), Western (T. wallichiana, T. florinii, and T. contorta), and Southern (T. calcicola, T. phytonii, T. mairei, and the Huangshan type). Orogenic activities and climate changes in the Tibetan Plateau since the Late Miocene likely facilitated the local adaptation of ancestral populations in Central China, the Hengduan Mountains, and the Yunnan–Guizhou Plateau, driving their expansion and diversification towards the west and south. Key environmental variables, including extreme temperature, temperature and precipitation variability, light, and altitude, were identified as major drivers of current niche divergence. Both niche conservatism and divergence were observed, with early conservatism followed by recent divergence. The Southern clade exhibits high heat and moisture tolerance, suggesting an adaptive shift, while the Central and Western clades retain ancestral drought and cold tolerance, displaying significant phylogenetic niche conservatism (PNC). We recommend prioritizing the conservation of T. qinlingensis, which exhibits the highest PNC level, particularly in the Qinling, Daba, and Taihang Mountains, which are highly degraded and vulnerable to future climate fluctuations. Full article
Show Figures

Figure 1

21 pages, 29782 KiB  
Article
Metallogenic Process of Forming the Large Xiangcaowa Karstic Bauxite Deposit from the Southern Margin of the North China Craton
by Wenxia Wang, Xuefei Sun, Lei Liu, Lihua Zhao, Rongrong Liang, Tongyi Zhang and Xuefei Liu
Minerals 2025, 15(3), 310; https://doi.org/10.3390/min15030310 - 17 Mar 2025
Viewed by 552
Abstract
North China Craton (NCC) formed the world’s largest karstic bauxite belt in the Late Carboniferous, with significant variations in metallogenic sources and conditions, which affect the overall understanding of karstic bauxite genesis. The Xiangcaowa bauxite deposit in the southern NCC is a large [...] Read more.
North China Craton (NCC) formed the world’s largest karstic bauxite belt in the Late Carboniferous, with significant variations in metallogenic sources and conditions, which affect the overall understanding of karstic bauxite genesis. The Xiangcaowa bauxite deposit in the southern NCC is a large deposit of uncertain provenance and genesis. This study employed geological, mineralogical, and chronology analysis to investigate the sources and genesis of Xiangcaowa bauxite, further contributing to a full understanding of the origin of bauxite throughout the NCC. Xiangcaowa ore-bearing rock series is composed of bauxite and claystone layers. The composition of bauxite ore encompasses diaspore, kaolinite, anatase, pyrite, zircon, and rutile. Widely developed mineral assemblages, such as diaspore–anatase–pyrite, indicate that bauxite is mainly formed in reducing and alkaline karstic depressions. Detrital zircons, aged ~450, ~520, ~950, and ~1100 Ma, predominantly originate from igneous rocks in the North Qinling Orogenic Belt (NQOB), and the ~1650 and ~2400 Ma zircon age populations are primarily from the southern margin of the NCC. Detrital rutiles, which are concentrated in 800–510 Ma, are primarily from the metamorphic rocks of the South Qinling Orogenic Belt (SQOB); rutiles aged ~1500–910 Ma are primarily from metamorphic rocks in the NQOB. These results confirm that the principal sources of the bauxite are the igneous and metamorphic rocks within the NQOB, along with the metamorphic rocks of the SQOB, while the basement rocks of the NCC contribute only minorly to its formation. A large karstic bauxite deposit was formed by the transport of large amounts of weathered material into extensive karstic depressions where reducing and alkaline conditions favoured diaspore deposition. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

20 pages, 13571 KiB  
Article
Geochemistry and U–Pb Chronology of the Triassic Yanchang Formation in the Southern Ordos Basin, China: Implications for Provenance and Geological Setting
by Fenhong Luo, Hujun Gong, Hang Liu, Bin Lv and Dali Xue
Minerals 2025, 15(3), 233; https://doi.org/10.3390/min15030233 - 26 Feb 2025
Viewed by 543
Abstract
During the deposition of the Middle–Upper Triassic Yanchang Formation, the southern margin of the Ordos Basin (OB) serves as a critical area for investigating the tectonic interactions between the North China Block (NCB) and Qinling Orogenic Belt (QOB). The provenance record of this [...] Read more.
During the deposition of the Middle–Upper Triassic Yanchang Formation, the southern margin of the Ordos Basin (OB) serves as a critical area for investigating the tectonic interactions between the North China Block (NCB) and Qinling Orogenic Belt (QOB). The provenance record of this sedimentary succession can be utilized to trace basin–mountain interactions using petrological, geochemical, and zircon age geochronological studies. We analyzed lithic fragments, geochemistry, and detrital zircon U–Pb ages of samples from the Xunyi Sanshuihe field profile, Weibei Uplift. Discrimination diagrams of major and trace elements revealed provenances and tectonic-sedimentary settings. Middle–Upper Triassic sandstones comprise quartz, feldspar, and lithic fragments. Their compositions are plotted within recycled orogenic and magmatic arc provenance fields. Multiple element diagrams reveal a felsic igneous rock provenance. Detrital zircon age spectra display four prominent age groups, which are ca. 240–270, 410–450, 1800–2200, and 2400–2600 Ma, and one minor age group, that is, 870–1197 Ma in the Late Triassic sample. We conclude that the provenance of the Yanchang Formation changed significantly during the Middle–Late Triassic. The Late Triassic sediments were mainly QOB-derived, and the basement was from the NCB. The pre-Triassic strata and Longmen pluton in the southwest of OB were the provenance of Middle Triassic sediments. The QOB suffered rapid uplift and denudation, resulting in rapid deposition and deep-water deposition in the southern OB, which provides excellent conditions for the high-quality oil shale of Ch 7. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

26 pages, 15286 KiB  
Article
Late Triassic Felsic and Mafic Magmatism in the South Qinling Orogen, Central China: Insights from the Petrology, Zircon U-Pb Geochronology, and Geochemistry of the Huoshaodian Pluton
by Meijing Li, Xianzhi Pei, Lei Pei, Zuochen Li, Ruibao Li, Shaowei Zhao, Li Qin, Mao Wang and Xiao Wang
Minerals 2025, 15(2), 120; https://doi.org/10.3390/min15020120 - 26 Jan 2025
Cited by 1 | Viewed by 898
Abstract
The petrology, geochemistry, and zircon U-Pb chronology of the Huoshaodian pluton in the Liuba area of the western part of the South Qinling tectonic belt are investigated in this study. The Huoshaodian pluton consists of gabbro, quartz diorite, and granodiorite, and the dominated [...] Read more.
The petrology, geochemistry, and zircon U-Pb chronology of the Huoshaodian pluton in the Liuba area of the western part of the South Qinling tectonic belt are investigated in this study. The Huoshaodian pluton consists of gabbro, quartz diorite, and granodiorite, and the dominated rock type is quartz diorite. The results indicate that the Huoshaodian pluton belongs to the calc-alkaline series. In the chondrite-normalized REE, all of the samples showed similar patterns, with an enrichment of light REEs and depletion of heavy REEs, but they showed slight differences in the degrees of Eu anomalies. The primitive mantle-normalized trace element diagram reveals an enrichment of large-ion lithophile elements (LILEs) and light rare earth elements (LREEs), as well as depleted high field strength elements (HFSEs). The zircon U-Pb dating results reveal that the gabbro, quartz diorite, and granodiorite have crystallization ages of 214.9 ± 0.58 Ma, 215.0 ± 1.2 Ma, and 215.4 ± 1.9 Ma, respectively, indicating that the Huoshaodian pluton was emplaced during the late Triassic period (214.9–215.4 Ma). In terms of petrogenesis, the gabbro of the Huoshaodian pluton originates from a transitional lithospheric mantle that has undergone fluid metasomatism and partial melting. Specifically, it originated through 1%–2% garnet spinel peridotite undergoing partial melting. In addition, the gabbro underwent a slight degree of contamination by crustal materials during its ascent and intrusion, with some continental crust material being incorporated. The quartz diorite and granodiorite of the Huoshaodian pluton are formed through partial melting processes occurring within the normal lower crust. Combined with the previous studies on the early Mesozoic tectonic evolution of the South Qinling, this study proposes that the formation mechanism of the Huoshaodian pluton may be as follows: in the early Triassic, the Mianlue Ocean subducted northward beneath the Qinling microblock, resulting in a large-scale continental-continental collision between the North China Block and the Yangtze Block; when the oceanic crust subducted to a certain depth, the detachment of the subducting slab triggered the upwelling of mantle material. The heat from mantle-derived magma caused the partial melting of the mafic lower crust, while the mafic magma entered into the upper granitic magma chamber and began to mix. Due to the high viscosity contrast and temperature difference between the two end-member magmas, incomplete mixing led to the formation of a melt with distinct adakitic characteristics and a mafic melt representing mantle-derived material. Full article
Show Figures

Figure 1

25 pages, 8369 KiB  
Article
Origin of Diorites and Coeval Mafic Microgranular Enclaves in the Liuba Region, South Qinling Orogen, Central China: Insights from Petrography, Zircon U-Pb Geochronology and Geochemistry
by Shan Gao, Xianzhi Pei, Lei Pei, Zuochen Li, Ruibao Li, Shaowei Zhao, Mao Wang, Li Qin and Xiao Wang
Minerals 2025, 15(1), 77; https://doi.org/10.3390/min15010077 - 15 Jan 2025
Viewed by 872
Abstract
The formation of early Mesozoic granitoid plutons in the Qinling Orogen is widely regarded as a result of the collision and accretion between the Yangtze Block and the South Qinling Block during the early Mesozoic, but the specific magmatic process, source composition, tectonic [...] Read more.
The formation of early Mesozoic granitoid plutons in the Qinling Orogen is widely regarded as a result of the collision and accretion between the Yangtze Block and the South Qinling Block during the early Mesozoic, but the specific magmatic process, source composition, tectonic environment and deep dynamic background remain controversial. This study reports the petrology, zircon U–Pb geochronology, and whole-rock geochemistry of diorites from the Liuba and Qingyangyi plutons in the South Qinling, to provide new evidence for understanding the final collision tectonic evolution process of Qinling Orogenic belt. The Liuba and Qingyangyi plutons, located in the central part of the South Qinling region, are primarily composed of quartz diorite and quartz monzodiorite, respectively. The results indicate that the weighted mean crystallization ages of the quartz diorite in the Liuba pluton range from 216.1 ± 0.8 Ma to 217.1 ± 1.3 Ma, with the weighted mean crystallization ages of its MMEs being 215.4 ± 1.0 Ma. The crystallization ages of the quartz monzodiorite in the Qingyangyi pluton range from 214.6 ± 0.9 Ma to 215.4 ± 0.9 Ma, suggesting that both plutons were formed in the late Triassic. The investigated plutons are characterized as right-leaning and have weak negative Eu anomalies on the chondrite-normalized REE patterns diagram. The large ion lithophile elements (LILE) Rb, Ba, Th and K are relatively enriched, while high-field strength elements (HFSE) Nb, Ta, Ti and P are strongly depleted. The formation of numerous MMEs in the Liuba pluton is the product of magmatic mixing. The Liuba and Qingyangyi plutons are the results of crust thickening and partial melting of lower crust caused by the comprehensive late Triassic collision between the Yangtze Block and the North China Block (NCB), and are the manifestation of magmatic intrusion along the South Qinling tectonic belt in the late Triassic period. Full article
Show Figures

Figure 1

22 pages, 6291 KiB  
Article
Origin of the Miaoling Gold Deposit, Xiong’ershan District, China: Findings Based on the Trace Element Characteristics and Sulfur Isotope Compositions of Pyrite
by Simo Chen, Junqiang Xu, Yanchen Yang, Shijiong Han, Peichao Ding, Zhaoyang Song, Tianwen Chen and Daixin Zhang
Minerals 2025, 15(1), 6; https://doi.org/10.3390/min15010006 - 24 Dec 2024
Viewed by 757
Abstract
The Xiong’ershan district is situated on the southern margin of the North China Craton (NCC) and located within the Qinling–Dabieshan Orogen’s orogenic zone. It is adjacent to the XiaoQinling mining district and exhibits very favorable geological conditions for mineralization, as the district contains [...] Read more.
The Xiong’ershan district is situated on the southern margin of the North China Craton (NCC) and located within the Qinling–Dabieshan Orogen’s orogenic zone. It is adjacent to the XiaoQinling mining district and exhibits very favorable geological conditions for mineralization, as the district contains numerous gold deposits, positioning it as one of the key gold-producing areas of China. The Miaoling gold deposit is a hydrothermal deposit and is controlled by the Mesozoic nearly NS-trending fault. The ore bodies are hosted in the Mesoproterozoic Xiong’er Group of the Changcheng System of volcanic rocks, with reserves reaching large-scale levels. Pyrite is the main gold-bearing mineral and can be classified into four generations: early-stage fine- to medium-grained euhedral to subhedral cubic pyrite (Py1); medium- to coarse-grained euhedral to subhedral cubic granular pyrite in quartz veins (Py2a); fine-grained subhedral to anhedral disseminated pyrite in altered rocks (Py2b); and late-stage anhedral granular and fine-veinlet pyrite in later quartz veins (Py3). Through in situ trace element analysis of the pyrite using LA-ICP-MS, a positive correlation between Au and As was observed during the main mineralization stage; gold mainly exists as a solid solution within the pyrite lattice, and the ablation signal curve reflecting the intensity of trace element signals showed that gold also occurs as micron-scale mineral inclusions. The trace element content suggested a gradual increase in oxygen fugacity from Stage 1 to Stage 2, followed by a decrease from Stage 2 to Stage 3. The Co/Ni values in the pyrite (0.56 to 62.02, with an average of 12.34) exhibited characteristics of magmatic hydrothermal pyrite. The in situ sulfur isotope analysis of the pyrite using LA-MC-ICP-MS showed δ34S values of 4.24‰ for Stage 1, −6.63‰ to −13.79‰ for Stage 2, and −4.31‰ to −5.15‰ for Stage 3. Considering sulfur isotope fractionation, the δ34S value of the hydrothermal fluid during the main mineralization stage was calculated to be between 0.31‰ and 2.68‰. Full article
(This article belongs to the Special Issue The Formation and Evolution of Gold Deposits in China)
Show Figures

Figure 1

30 pages, 7429 KiB  
Article
Isotope Geochemistry and Metallogenic Model of the Bailugou Vein-Type Zn-Pb-Ag Deposit, Eastern Qinling Orogen, China
by Yan Yang, Hui Chen, Nana Guo, Donghao Wu, Zhenshan Pang and Yanjing Chen
Minerals 2024, 14(12), 1244; https://doi.org/10.3390/min14121244 - 6 Dec 2024
Cited by 1 | Viewed by 899
Abstract
The large-scale vein-type Zn-Pb-Ag deposit in the Eastern Qinling Orogen (EQO) has sparked a long-standing debate over whether magmatism or metamorphism was the primary control or factor in its formation. Among the region’s vein-type deposits, the large-sized Bailugou deposit offers a unique opportunity [...] Read more.
The large-scale vein-type Zn-Pb-Ag deposit in the Eastern Qinling Orogen (EQO) has sparked a long-standing debate over whether magmatism or metamorphism was the primary control or factor in its formation. Among the region’s vein-type deposits, the large-sized Bailugou deposit offers a unique opportunity to study this style of mineralization. Similar to other deposits in the area, the vein-type orebodies of the Bailugou deposit are hosted in dolomitic marbles (carbonate–shale–chert association, CSC) of the Mesoproterozoic Guandaokou Group. Faults control the distribution of the Bailugou deposit but do not show apparent spatial links to the regional Yanshanian granitic porphyry. This study conducted comprehensive H–O–C–S–Pb isotopic analyses to constrain the sources of the ore-forming metals and metal endowments of the Bailugou deposit. The δ34SCDT values of sulfides range from 1.1‰ to 9.1‰ with an average of 4.0‰, indicating that the sulfur generated from homogenization during the high-temperature source acted on host sediments. The Pb isotopic compositions obtained from 31 sulfide samples reveal that the lead originated from the host sediments rather than from the Mesozoic granitic intrusions. The results indicate that the metals for the Bailugou deposit were jointly sourced from host sediments of the Mid-Late Proterozoic Meiyaogou Fm. and the Nannihu Fm. of the Luanchuan Group and Guandaokou Group, as well as lower crust and mantle materials. The isotopic composition of carbon, hydrogen, and oxygen collectively indicate that the metallogenic constituents of the Bailugou deposit were contributed by ore-bearing surrounding rocks, lower crust, and mantle materials. In summary, the study presents a composite geologic-metallogenic model suggesting that the Bailugou mineral system, along with other lead-zinc-silver deposits, porphyry-skarn molybdenum-tungsten deposits, and the small granitic intrusions in the Luanchuan area, are all products of contemporaneous hydrothermal diagenetic mineralization. This mineralization event transpired during a continental collision regime between the Yangtze and the North China Block (including syn- to post-collisional settings), particularly during the transition from collisional compression to extension around 140 Ma. The Bailugou lead-zinc-silver mineralization resembles an orogenic-type deposit formed by metamorphic fluid during the Yanshanian Orogeny. Full article
Show Figures

Figure 1

18 pages, 3922 KiB  
Article
Mineralogical Characteristics and Purification Experiments of Quartz from a Pegmatite: A Case Study in the Lushi Region of the Qinling Orogenic Belt, Central China
by Jamuna Thapa Magar, Xiaoyong Yang, Kaiwen Li, Mei Xia, Xiaoyu Li and Zhichao Cai
Minerals 2024, 14(12), 1225; https://doi.org/10.3390/min14121225 - 1 Dec 2024
Cited by 2 | Viewed by 1490
Abstract
This study uses a sample of pegmatite (LS-1) from the Longquanping deposit in Lushi County, Henan Province, to evaluate its potential as a valuable source of HPQ. This investigation uses various analytical techniques to assess the quality of quartz and its suitability for [...] Read more.
This study uses a sample of pegmatite (LS-1) from the Longquanping deposit in Lushi County, Henan Province, to evaluate its potential as a valuable source of HPQ. This investigation uses various analytical techniques to assess the quality of quartz and its suitability for industrial applications. The methods used in this study include optical microscopy, scanning electron microscopy (SEM), Raman spectroscopy, X-ray fluorescence spectrometry (XRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and inductively coupled plasma mass spectrometry (ICP-MS) to analyze the petrographic, mineralogical, and trace element characteristics of quartz before and after purification and comprehensively evaluate the potential of quartz in these rocks as an HPQ raw material ore. The optical and scanning electron microscopic observations reveal several impurities and associated minerals in quartz, including feldspar, biotite, magnetite, sphene, and large number of fluid inclusions composed of both gas and liquid phases. The content of trace element in raw quartz ore in the LS-1 sample as determined by LA-ICP-MS analysis ranges from 41.61 to 256.13 ppm, with the main impurity elements being Al, Ti, Li, Na, K, and Ca. After purification, the SiO2 contents and total trace elements contents of the LS-1 refined quartz sand was 99.997 wt.% and 29.29 ppm, respectively, with Al (13.29 ppm), Ti (4.20 ppm), Li (1.15 ppm), and Na (10.32 ppm). The major trace element contents of Al and Ti in the quartz concentrates were lower than the upper limit of the HPQ standard and thus belonged to the high-end products (4N8). Results of this study show that quartz from a pegmatite in the Lushi region has the potential to be purified HPQ. This study underscores the importance of thorough mineralogical and elemental analyses in assessing the suitability of quartz raw material deposits for HPQ production. Full article
Show Figures

Figure 1

24 pages, 10810 KiB  
Article
Petrogenesis of the Shibaogou Mo-W-Associated Porphyritic Granite, West Henan, China: Constrains from Geochemistry, Zircon U-Pb Chronology, and Sr-Nd-Pb Isotopes
by Zhiwei Qiu, Zhenju Zhou, Nan Qi, Pocheng Huang, Junming Yao, Yantao Feng and Yanjing Chen
Minerals 2024, 14(11), 1173; https://doi.org/10.3390/min14111173 - 19 Nov 2024
Cited by 1 | Viewed by 967
Abstract
The Shibaogou pluton, located in the Luanchuan orefield of western Henan Province in China, is a typical porphyritic granite within the Yanshanian “Dabie-type” Mo metallogenic system. It is mainly composed of porphyritic monzogranite and porphyritic syenogranite. Zircon U-Pb dating results indicate emplacement ages [...] Read more.
The Shibaogou pluton, located in the Luanchuan orefield of western Henan Province in China, is a typical porphyritic granite within the Yanshanian “Dabie-type” Mo metallogenic system. It is mainly composed of porphyritic monzogranite and porphyritic syenogranite. Zircon U-Pb dating results indicate emplacement ages of 150.1 ± 1.3 Ma and 151.0 ± 1.1 Ma for the monzogranite and 148.1 ± 1.0 Ma and 148.5 ± 1.3 Ma for the syenogranite. The pluton is characterized by geochemical features of high silicon, metaluminous, and high-K calc-alkaline compositions, enriched in Rb, U, Th, and Pb, and exhibits high Sr/Y (18.53–58.82), high (La/Yb)N (9.01–35.51), and weak Eu anomalies. These features indicate a source region from a thickened lower crust with garnet and rutile as residual phases at depths of approximately 40–60 km. Sr-Nd-Pb isotopic analyses suggest that the magmatic source is mainly derived from the Taihua and Xiong’er Groups of the Huaxiong Block, mixed with juvenile crustal rocks from the Kuanping and Erlangping Groups of the North Qinling Accretion Belt. Combined with geological and isotopic characteristics, it is concluded that the Shibaogou pluton formed during the compression–extension transition period associated with the collision between the Yangtze Block and the North China Craton, reflecting the complex partial melting processes in the thickened lower crust. The present study reveals that the magmatic–hydrothermal activity at Shibaogou lasted approximately 5 Ma, showing multi-phase characteristics, further demonstrating the close relationship between the pluton and the Mo-W mineralization. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

22 pages, 12521 KiB  
Article
Mineral Chemistry and In Situ LA-ICP-MS Titanite U-Pb Geochronology of the Changba-Lijiagou Giant Pb-Zn Deposit, Western Qinling Orogen: Implications for a Distal Skarn Ore Formation
by Ran Wei, Yitian Wang, Qiaoqing Hu, Xielu Liu, Huijin Guo and Wenrong Hu
Minerals 2024, 14(11), 1123; https://doi.org/10.3390/min14111123 - 6 Nov 2024
Viewed by 812
Abstract
The giant Changba-Lijiagou (Ch-L) Pb-Zn deposit is in the northeast part of the Xicheng ore cluster, Western Qinling Orogen. The ore genesis remains controversial; it could be either a sedimentary exhalative genetic type or an epigenetic hydrothermal genetic type. Here, in situ titanite [...] Read more.
The giant Changba-Lijiagou (Ch-L) Pb-Zn deposit is in the northeast part of the Xicheng ore cluster, Western Qinling Orogen. The ore genesis remains controversial; it could be either a sedimentary exhalative genetic type or an epigenetic hydrothermal genetic type. Here, in situ titanite U-Pb dating for the two kinds of titanite is presented, yielding ages of 212.8 ± 3.0 Ma in the mineralized skarn ore and 214.6 ± 5.1 Ma in the host rock. These ages conform to the previously reported magmatic zircon age (229–211 Ma) based on the in situ zircon U-Pb dating of plutons in this district and the time of large-scale magmatic–hydrothermal activities in Western Qinling Orogen (229–209 Ma). Titanites occurring in mineralized skarn and those that are calcite-hosted are similar to hydrothermal-origin titanites in major element characteristics. The Eu anomalies in the two types of titanite record oxidizing conditions during the mineralization process. A mineral assemblage of garnet, pyroxene, riebeckite, biotite, and potash feldspar, replacing the albite, is well-developed in the deposit. The mineralogical and geochronological characteristics indicate that the Ch-L Pb-Zn deposit is a distal skarn deposit and the result of intensive tectonomagmatic processes in the Xicheng ore cluster during the process of the Late Triassic orogeny. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

26 pages, 8215 KiB  
Article
Genesis of the Bailugou Vein-Type Zinc-Lead-Silver Deposit, Eastern Qinling Orogen, China: Constraints from Ore Geology and Fluid Inclusions
by Yan Yang, Nana Guo, Hui Chen, Donghao Wu, Zhenshan Pang and Yanjing Chen
Minerals 2024, 14(11), 1119; https://doi.org/10.3390/min14111119 - 4 Nov 2024
Cited by 1 | Viewed by 1019
Abstract
The Bailugou vein-type zinc-lead-silver deposit is located in the Eastern Qinling Orogen, China. There has been a long-standing debate about whether its formation is related to magmatism or metamorphism. To determine the origin of ore-forming materials and fluids, we conducted a geological and [...] Read more.
The Bailugou vein-type zinc-lead-silver deposit is located in the Eastern Qinling Orogen, China. There has been a long-standing debate about whether its formation is related to magmatism or metamorphism. To determine the origin of ore-forming materials and fluids, we conducted a geological and fluid inclusion investigation of the Bailugou. Field surveys show that the vein-type orebodies are controlled by faults in the dolomitic marbles of the Mesoproterozoic Guandaokou Group, and they are distal to the regional Yanshanian intrusions. Four ore stages, i.e., quartz–pyrite ± sphalerite (Stage 1), quartz–polymetallic sulfides (Stage 2), dolomite–polymetallic sulfides (Stage 3), and calcite (Stage 4), are identified through microscopic observation. The homogenization temperatures of measured fluid inclusions vary in the range of 100 °C to 400 °C, with the dominating concentration at 350 °C to 400 °C, displaying a descending trend from early to late stages. The estimated formation depth of the Bailugou deposit varies from 2 km to 12 km, which is deeper than the metallogenic limit of the epithermal hydrothermal deposit but conforms to the typical characteristics of a fault-controlled deposit. The ore-forming fluid in Stage 1 originates from a fluid mixture and experiences a phase separation (or fluid immiscibility) between the metamorphic-sourced fluid and the fluids associated with ore-bearing carbonate-shale-chert association (CSC) strata. This process results in the transition to metamorphic hydrothermal fluid due to water–rock interactions in Stage 2, culminating in gradual weakening and potential fluid boiling during the mineralization of Stage 3. Collectively, the Bailugou lead-zinc-silver mineralization resembles an orogenic-type deposit formed by metamorphic fluids in the Qinling Yanshanian intracontinental orogeny. Full article
Show Figures

Figure 1

39 pages, 18863 KiB  
Article
Provenance of the He 8 Member of the Upper Paleozoic Shihezi Formation, Ordos Basin, China: Insights from Heavy Minerals, Paleocurrents, Detrital Zircon Chronology, and Hf Isotopes
by Wenqi Pan, Ziwen Jiang, Liyong Fan, Zhengtao Zhang, Zhichao Li, Shangwei Ma, Zhendong Wang, Xiangjun Li and Weiran Zhao
Minerals 2024, 14(11), 1076; https://doi.org/10.3390/min14111076 - 25 Oct 2024
Cited by 1 | Viewed by 1008
Abstract
The Ordos Basin is located in the western part of the North China Craton. The Upper Paleozoic Shihezi Formation, particularly the He 8 Member, is one of the main gas-bearing strata. However, the source areas for the north and south sections have not [...] Read more.
The Ordos Basin is located in the western part of the North China Craton. The Upper Paleozoic Shihezi Formation, particularly the He 8 Member, is one of the main gas-bearing strata. However, the source areas for the north and south sections have not been clearly distinguished, which has constrained oil and gas exploration to some extent. Therefore, understanding the source rock evolution of He 8 Member in both the south and north basins will provide a favorable theoretical basis for oil and gas exploration. The provenance of the He 8 Member of the Shihezi Formation in the Ordos Basin has not been well defined until now. Seven wellbore sandstone samples and three field outcrop sandstone samples from the He 8 Member in the Ordos Basin were analyzed. Based on zircon U–Pb dating and Lu–Hf isotope analyses, zircon assemblages of 520–386 Ma and 350–268 Ma in the southern Ordos Basin might have originated from the North Qinling Orogenic Belt (NQinOB) and the North Qilian Orogenic Belt (NQiOB); the 350–268 Ma age group of zircons from the NQinOB, and a large number of ~320–260 Ma detrital zircons supplied to the southern Ordos Basin by the NQinOB suggest that NQinOB magmatic and/or metamorphic events may have occurred in the NQinOB during the ~320–260 Ma period. From ~320–260 Ma, the NQinOB might have experienced significant tectonic activity that has not been fully revealed thus far. The zircons from 2600–2300 Ma, 2000–1600 Ma, and 450–300 Ma in the northern Ordos Basin might have been derived from the Trans-North China Orogenic Belt (TNCO), the Khondalite Belt, the Yinshan Belt, and the Alxa Belt. The paleocurrent and heavy mineral analyses determined that there are certain differences between the northern Ordos Basin and southern Ordos Basin, with unstable minerals such as barite and pyrite, as well as moderately stable minerals such as garnet, showing an increasing trend from south to north. There are also differences in the dominant paleocurrent directions between the south and north parts of the basin, and the Hf isotope data in the Ordos Basin show two-stage Hf model ages (TDM2) ranging from 918 Ma to 3574 Ma. As a result, the He 8 Member deposits in the southern Ordos Basin and northern Ordos Basin had different sources. The southern Ordos Basin might have derived from the NQinOB, the NQiOB, and the TNCO, and the northern Ordos Basin might have derived from the TNCO, the Khondalite Belt, the Yinshan Belt, and the Alxa Belt. Full article
Show Figures

Figure 1

Back to TopTop