Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Pulmonaria officinalis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 923 KB  
Article
Assessment of Antioxidant Activity and Dose-Dependent Effect on Genotoxicity/Antigenotoxicity of Pulmonaria officinalis Ethanolic Extract
by Ana Ignjatijević, Tamara Anđić, Marija Lješević, Biljana Nikolić, Tea Ganić, Stefana Spasović and Stefana Vuletić
Pharmaceutics 2025, 17(9), 1134; https://doi.org/10.3390/pharmaceutics17091134 - 29 Aug 2025
Viewed by 1273
Abstract
Background/Objectives: Pulmonaria officinalis L., commonly known as lungwort, is a medicinal plant traditionally used for respiratory ailments, but its biological activities have not yet been sufficiently researched. The aim of this study was to investigate the antioxidant and dose-dependent genotoxic/antigenotoxic properties of [...] Read more.
Background/Objectives: Pulmonaria officinalis L., commonly known as lungwort, is a medicinal plant traditionally used for respiratory ailments, but its biological activities have not yet been sufficiently researched. The aim of this study was to investigate the antioxidant and dose-dependent genotoxic/antigenotoxic properties of a 70% ethanolic extract. Methods: Quantification of polyphenols and GC–MS analysis were performed in order to chemically characterize the extract. Antioxidant activity was evaluated through DPPH, PFRAP, total antioxidant capacity (TAC), and ferrous ion chelating assay (FIC). MTT and alkaline comet assay were used for investigation of cytotoxicity and geno/antigenotoxicity on normal fetal fibroblast cells (MRC-5). Results: The chemical analysis of the extract showed that the extract is rich in polyphenolics and that phytol is the most abundant compound, accompanied by terpenoids, fatty acids, alcohols, polyketides, and alkaloids. In addition, notable antioxidant capacity was detected in all tests applied. The extract reduced cell viability only at the highest concentration tested (33.7%). Furthermore, a dual dose-dependent effect was recorded since the genotoxic effect of the tested extract was observed at higher concentrations, while non-genotoxic concentrations showed protective effects against oxidative damage of DNA. Namely, pretreatment with lungwort extract reduced the DNA damage induced by H2O2, with the highest protective effect at the lowest tested concentration, indicating a hormetic mode of action. Conclusions: These results provide a solid foundation for future research into this medicinal plant, with the aim of its potential therapeutic use in the prevention of diseases associated with oxidative stress. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Graphical abstract

20 pages, 4228 KB  
Article
Insulin-Mimetic Activity of Herbal Extracts Identified with Large-Scale Total Internal Reflection Fluorescence Microscopy
by Cathrina Neuhauser, Bettina Schwarzinger, Clemens Schwarzinger, Michaela Feichtinger, Verena Stadlbauer, Verena Arnaut, Ivana Drotarova, Bernhard Blank-Landeshammer and Julian Weghuber
Nutrients 2024, 16(14), 2182; https://doi.org/10.3390/nu16142182 - 9 Jul 2024
Cited by 1 | Viewed by 3333
Abstract
Diabetes mellitus is a spreading global pandemic. Type 2 diabetes mellitus (T2DM) is the predominant form of diabetes, in which a reduction in blood glucose uptake is caused by impaired glucose transporter 4 (GLUT4) translocation to the plasma membrane in adipose and muscle [...] Read more.
Diabetes mellitus is a spreading global pandemic. Type 2 diabetes mellitus (T2DM) is the predominant form of diabetes, in which a reduction in blood glucose uptake is caused by impaired glucose transporter 4 (GLUT4) translocation to the plasma membrane in adipose and muscle cells. Antihyperglycemic drugs play a pivotal role in ameliorating diabetes symptoms but often are associated with side effects. Hence, novel antidiabetic compounds and nutraceutical candidates are urgently needed. Phytogenic therapy can support the prevention and amelioration of impaired glucose homeostasis. Using total internal reflection fluorescence microscopy (TIRFM), 772 plant extracts of an open-access plant extract library were screened for their GLUT4 translocation activation potential, resulting in 9% positive hits. Based on commercial interest and TIRFM assay-based GLUT4 translocation activation, some of these extracts were selected, and their blood glucose-reducing effects in ovo were investigated using a modified hen’s egg test (Gluc-HET). To identify the active plant part, some of the available candidate plants were prepared in-house from blossoms, leaves, stems, or roots and tested. Acacia catechu (catechu), Pulmonaria officinalis (lungwort), Mentha spicata (spearmint), and Saponaria officinalis (common soapwort) revealed their potentials as antidiabetic nutraceuticals, with common soapwort containing GLUT4 translocation-activating saponarin. Full article
(This article belongs to the Special Issue The Role of Bioactive Compounds in Blood Glucose Control)
Show Figures

Figure 1

18 pages, 3160 KB  
Article
Antioxidant Capacity of Honey Enriched by Wildflowers
by Maria Anna Czernicka, Patrycja Sowa-Borowiec, Tomasz Dudek, Jan Cichoński, Czesław Puchalski and Grzegorz Chrzanowski
Appl. Sci. 2024, 14(5), 2018; https://doi.org/10.3390/app14052018 - 29 Feb 2024
Cited by 5 | Viewed by 4191
Abstract
The study objective was a comparative analysis of rapeseed and multifloral honey enriched by flowers of six plant species: lungwort (Pulmonaria officinalis L.), high mallow (Malva sylvestris L.), cowslip primrose (Primula veris L.), coltsfoot (Tussilago farfara L.), lawn daisy [...] Read more.
The study objective was a comparative analysis of rapeseed and multifloral honey enriched by flowers of six plant species: lungwort (Pulmonaria officinalis L.), high mallow (Malva sylvestris L.), cowslip primrose (Primula veris L.), coltsfoot (Tussilago farfara L.), lawn daisy (Bellis perennis L.), and black elderberry (Sambucus nigra L.). The honey was enriched with dry flowers and plant extracts at a level of 1%, 2%, and 4% (w/w). Antioxidant capacity was measured via two different methods: DPPH and ABTS assay. Total phenolic content and total flavonoid content were determined using colorimetric methods. The highest radical scavenging capacity determined by the DPPH assay was observed in rapeseed honey with a 4% dried cowslip primrose (Primula veris L.) flower addition, which was more than 50 times higher than the activity for pure rapeseed honey. Almost 100% of the radical scavenging capacity was found for rapeseed and multifloral honeys with cowslip primrose (Primula veris L.), especially for the 4% dried flower addition, more than six times that of the control samples measured using the ABTS test. Multifloral honeys enriched with black elderberry (Sambucus nigra L.) and cowslip primrose (Primula veris L.), with a 2% and 4% plant material addition, both as an extract and as dried flowers, were characterised by the highest total phenolic content. The highest enrichment effectiveness was observed for dried flowers of lungwort (Pulmonaria officinalis L.), black elderberry (Sambucus nigra L.), and high mallow (Malva sylvestris L.), where the flavonoid content increased more than nine times compared to the honey samples without additions. The content of biologically active substances in honey enriched with flowers gives hope for new applications of the health-promoting substances contained in wild plants. Full article
Show Figures

Figure 1

20 pages, 2320 KB  
Review
Biological Activities and Phytochemicals of Lungworts (Genus Pulmonaria) Focusing on Pulmonaria officinalis
by Shweta Chauhan, Varun Jaiswal, Yeong-Im Cho and Hae-Jeung Lee
Appl. Sci. 2022, 12(13), 6678; https://doi.org/10.3390/app12136678 - 1 Jul 2022
Cited by 10 | Viewed by 13543
Abstract
Lungworts (members of genus Pulmonaria), especially Pulmonaria officinalis, have been used as medicinal plants in folk and traditional medicine. The potential biological activities of lungworts, such as antioxidant, anti-inflammatory, anti-neurodegenerative, skin whitening, anticoagulant, antibacterial, anti-anemic, anticonvulsant, and wound-healing properties, have been [...] Read more.
Lungworts (members of genus Pulmonaria), especially Pulmonaria officinalis, have been used as medicinal plants in folk and traditional medicine. The potential biological activities of lungworts, such as antioxidant, anti-inflammatory, anti-neurodegenerative, skin whitening, anticoagulant, antibacterial, anti-anemic, anticonvulsant, and wound-healing properties, have been observed in different studies. More than 90 phytochemicals belonging to pharmacologically active phytochemical classes have been reported for lungworts, which can be considered as one of the important contributors to the biological properties along with micronutrients. However, safety studies and clinical trials are missing for lungworts to establish most of their potential biological properties. Similarly, in vivo studies are lacking for anti-inflammatory and anti-neurodegenerative disorders and more in vivo studies are required to strengthen the knowledge of their antioxidant, anticoagulant, and anti-convulsant properties. A comprehensive compilation of the phytochemicals and biological properties of lungworts is also lacking in the literature, which can provide future direction for further pharmacological research. Hence, an attempt has been made in this study to compile the phytochemicals and biological properties to not only provide the resources for the design of further research to develop the pharmacological application of lungworts, but also to highlight the gaps and provide suggestions for future development. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

16 pages, 4492 KB  
Article
Effect of Selected Meteorological Variables on Full Flowering of Some Forest Herbs in the Western Carpathians
by Martin Kubov, Branislav Schieber and Rastislav Janík
Atmosphere 2022, 13(2), 195; https://doi.org/10.3390/atmos13020195 - 25 Jan 2022
Cited by 7 | Viewed by 3019
Abstract
At present, temperate forest ecosystems are endangered by both abiotic and biotic factors. The effects of abiotic components, e.g., meteorological variables, are constantly studied. However, the detailed mechanisms affecting the phenology of plants are still unknown. Two meteorological variables (air temperature and cumulative [...] Read more.
At present, temperate forest ecosystems are endangered by both abiotic and biotic factors. The effects of abiotic components, e.g., meteorological variables, are constantly studied. However, the detailed mechanisms affecting the phenology of plants are still unknown. Two meteorological variables (air temperature and cumulative precipitation) were analysed for the period from 1995 to 2020 in order to determine which factor which has a more significant effect on onset of the full-flowering (FF) phenophase. A set of nine forest herbs, representing different phenological groups from the viewpoint of flowering, was examined (early spring: Petasites albus and Pulmonaria officinalis; mid-spring: Carex pilosa and Dentaria bulbifera; late spring: Fragaria visa and Galium odoratum; early summer: Veronica officinalis; mid-summer: Mycelis muralis; and late summer: Campanula trachelium). Temperature-sum requirements and temporal trends in the onset of FF were also studied. The research conducted at the Ecological Experimental Station in the Kremnické vrchy Mountains (central Slovakia) at an altitude of 500 m asl. Our results show that the air temperature correlated more significantly with the date of onset of FF (r > 0.6, p < 0.001) than with precipitation. On average, the air-temperature sums, calculated for the threshold temperatures of 0 °C and 5 °C, increased from 142.9 °C (Petasites albus) to 1732.9 °C (Campanula trachelium) and from 223.4 °C (Petasites albus) to 1820.8 °C (Campanula trachelium), respectively. Temporal trends in the onset of FF over the last 26 years confirm shifts to earlier dates for most species (excepting early spring Petasites albus). In spring flowering species, shifts ranged from 2 days (0.07 day/year) for Pulmonaria officinalis to 8 days (0.30 day/year) for Carex pilosa. As for summer species, the onset of flowering shifted more significantly to earlier dates—from 7 days (0.27 day/year) for Campanula trachelium to 12 days (0.46 day/year) for Veronica officinalis. The observed trends were statistically significant (p < 0.05) for five examined species (Carex pilosa, Dentaria bulbifera, Fragaria vesca, Veronica officinalis and Mycelis muralis). Full article
(This article belongs to the Special Issue Climate Change and Forest Environment)
Show Figures

Figure 1

18 pages, 1213 KB  
Article
Pulmonaria obscura and Pulmonaria officinalis Extracts as Mitigators of Peroxynitrite-Induced Oxidative Stress and Cyclooxygenase-2 Inhibitors–In Vitro and In Silico Studies
by Justyna Krzyżanowska-Kowalczyk, Mariusz Kowalczyk, Michał B. Ponczek, Łukasz Pecio, Paweł Nowak and Joanna Kolodziejczyk-Czepas
Molecules 2021, 26(3), 631; https://doi.org/10.3390/molecules26030631 - 26 Jan 2021
Cited by 11 | Viewed by 4798
Abstract
The Pulmonaria species (lungwort) are edible plants and traditional remedies for different disorders of the respiratory system. Our work covers a comparative study on biological actions in human blood plasma and cyclooxygenase-2 (COX-2) -inhibitory properties of plant extracts (i.e., phenolic-rich fractions) originated from [...] Read more.
The Pulmonaria species (lungwort) are edible plants and traditional remedies for different disorders of the respiratory system. Our work covers a comparative study on biological actions in human blood plasma and cyclooxygenase-2 (COX-2) -inhibitory properties of plant extracts (i.e., phenolic-rich fractions) originated from aerial parts of P. obscura Dumort. and P. officinalis L. Phytochemical profiling demonstrated the abundance of phenolic acids and their derivatives (over 80% of the isolated fractions). Danshensu conjugates with caffeic acid, i.e., rosmarinic, lithospermic, salvianolic, monardic, shimobashiric and yunnaneic acids were identified as predominant components. The examined extracts (1–100 µg/mL) partly prevented harmful effects of the peroxynitrite-induced oxidative stress in blood plasma (decreased oxidative damage to blood plasma components and improved its non-enzymatic antioxidant capacity). The cellular safety of the extracts was confirmed in experimental models of blood platelets and peripheral blood mononuclear cells. COX-2 inhibitor screening evidently suggested a stronger activity of P. officinalis (IC50 of 13.28 and 7.24 µg/mL, in reaction with synthetic chromogen and physiological substrate (arachidonic acid), respectively). In silico studies on interactions of main components of the Pulmonaria extracts with the COX-2 demonstrated the abilities of ten compounds to bind with the enzyme, including rosmarinic acid, menisdaurin, globoidnan A and salvianolic acid H. Full article
Show Figures

Graphical abstract

14 pages, 1149 KB  
Article
The Pros and Cons of Cystic Fibrosis (CF) Patient Use of Herbal Supplements Containing Pulmonaria officinalis L. Extract: the Evidence from an In Vitro Study on Staphylococcus aureus CF Clinical Isolates
by Beata Sadowska, Urszula Wójcik, Justyna Krzyżanowska-Kowalczyk, Mariusz Kowalczyk, Anna Stochmal, Joanna Rywaniak, Julia Burzyńska and Barbara Różalska
Molecules 2019, 24(6), 1151; https://doi.org/10.3390/molecules24061151 - 22 Mar 2019
Cited by 8 | Viewed by 6054
Abstract
The justification for the use of herbal supplements with Pulmonaria officinalis L. extract (POE) in the case of staphylococcal lung colonization/infections characteristic for cystic fibrosis (CF), was examined in vitro. The impact of POE phenolic-rich fraction on the virulence attributes of CF-associated Staphylococcus [...] Read more.
The justification for the use of herbal supplements with Pulmonaria officinalis L. extract (POE) in the case of staphylococcal lung colonization/infections characteristic for cystic fibrosis (CF), was examined in vitro. The impact of POE phenolic-rich fraction on the virulence attributes of CF-associated Staphylococcus aureus (S. aureus) clinical strains has been assessed, including pathogen adhesion, biofilm formation on native and protein-conditioned surfaces (mucin, elastin), mature biofilm eradication, staphylococcal protein A expression, α-toxin release, and S. a. adhesion to A549 cells. Cytotoxicity of the extract to lung epithelial cells was also investigated. It was found that POE has bacteriostatic effects at MIC 1–2 mg/mL, recognized as of limited efficacy, but at MIC/subMICs it targeted virulence not viability. It usually decreased S. aureus adhesion and less frequently inhibited biofilm formation on native and protein-conditioned surfaces. Observed effect seems to be related to significant reduction by POE of sortase A activity. However, in some cases POE favored the creation of biofilm by staphylococci and S. aureus adhesion to the lung epithelium was not limited. On the other side POE caused significant decrease of S. a. α-toxin synthesis and slightly weakened the expression of SpA. When used at supraMICs POE eradicated mature biofilm, but in some cases with unsatisfying outcomes. Promisingly, POE has been recognized as a safe product, with no cytotoxicity up to 4 mg/mL. These results reflect the positive, negative or neutral anti-staphylococcal properties of POE. It seems that POE may be beneficial as a prophylactic, but not as a therapeutic or supportive agent in the area of CF—integrative medicine. However, introduction the official recommendations needs further in vivo studies. Full article
(This article belongs to the Special Issue Antimicrobial Properties of Natural Products)
Show Figures

Graphical abstract

32 pages, 4225 KB  
Article
Novel Phenolic Constituents of Pulmonaria officinalis L. LC-MS/MS Comparison of Spring and Autumn Metabolite Profiles
by Justyna Krzyżanowska-Kowalczyk, Łukasz Pecio, Jarosław Mołdoch, Agnieszka Ludwiczuk and Mariusz Kowalczyk
Molecules 2018, 23(9), 2277; https://doi.org/10.3390/molecules23092277 - 6 Sep 2018
Cited by 48 | Viewed by 11548
Abstract
Lungwort (Pulmonaria officinalis L., Boraginaceae) is considered to possess therapeutic properties and it has been traditionally used as a remedy against various lung disorders in many countries. Nevertheless, very few data concerning its phytochemical composition are available. This research aims to provide [...] Read more.
Lungwort (Pulmonaria officinalis L., Boraginaceae) is considered to possess therapeutic properties and it has been traditionally used as a remedy against various lung disorders in many countries. Nevertheless, very few data concerning its phytochemical composition are available. This research aims to provide a detailed description of specialized metabolites from the aerial parts of lungwort. Nine previously undescribed and 36 known phenolic compounds were detected in the 50% methanolic extract. Following multistep preparative procedures, structures of newly discovered compounds were determined using one- and two-dimensional techniques of NMR spectroscopy. Among the identified compounds were caffeic acid esters with aliphatic hydroxycarboxylic acids, conjugates of dicaffeic acid with rosmarinic acid, and previously unknown isomers of isosalvianolic acid A and yunnaneic acid E, as well as other lignans. Concentrations of all identified phenolic derivatives in the investigated herbal material were estimated using a method based on liquid chromatography with high-resolution mass spectrometry detection. Seasonal changes in the concentration of metabolites were also investigated using targeted and untargeted metabolomics techniques. Full article
Show Figures

Graphical abstract

Back to TopTop