Antioxidant Capacity of Honey Enriched by Wildflowers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Preparation of the Flower Extracts
2.4. Honey Samples and Experimental Conditions
2.5. Total Antioxidant Capacity
2.6. Total Phenolic Content (TPC)
2.7. Total Flavonoid Content
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puścion-Jakubik, A.; Borawska, M.H.; Socha, K. Modern Methods for Assessing the Quality of Bee Honey and Botanical Origin Identification. Foods 2020, 9, 1028. [Google Scholar] [CrossRef]
- Machado De-Melo, A.A.; Almeida-Muradian, L.B.; Sancho, M.T.; Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J Apic. Res. 2018, 57, 5–37. [Google Scholar] [CrossRef]
- Wantusiak, P.M.; Piszcz, P.; Skwarek, M.; Głód, B.K. Właściwości antyoksydacyjne miodów wyznaczone metodami chromatograficznymi [Antioxidative properties of honeys determined using HPLC techniques]. Camera Separatoria 2011, 3, 297–317. [Google Scholar]
- D’Arcy, B.R. Antioxidants in Australian Floral Honeys: Idetification of Health-Enhancing Nutrient Componts; RIRDC Publication No05/040; Rural Industries Research and Development Corporation: Kingston, Australia, 2005; pp. 42–47. [Google Scholar]
- Baltrušaityté, V.; Venskutonis, P.R.; Čeksteryté, V. Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chem. 2007, 101, 502–514. [Google Scholar] [CrossRef]
- Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Facino, R.M. Standarization of antioxidant properties of honey by a combination of spectrophotometric/fluorometric assays and chemometrics. Anal. Chim. Acta 2005, 533, 185–191. [Google Scholar] [CrossRef]
- Socha, R.; Juszczak, L.; Pietrzyk, S.; Fortuna, T. Antioxidant activity and phenolic composition of herbhoneys. Food Chem. 2009, 113, 568–574. [Google Scholar] [CrossRef]
- Vazquez, L.; Armada, D.; Celeiro, M.; Dagnac, T.; Llompart, M. Evaluating the Presence and Contents of Phytochemicals in Honey Samples: Phenolic Compounds as Indicators to Identify Their Botanical Origin. Foods 2021, 10, 2616. [Google Scholar] [CrossRef] [PubMed]
- Ajibola, A.; Chamunorwa, J.P.; Erlwanger, K.H. Nutraceutical values of natural honey and its contribution to human health and wealth. Nutr. Metab. 2012, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nichițean, A.L.; Constantinescu-Aruxandei, D.; Oancea, F. Health promoting quality of the Romanian honey. Sci. Bull. Series F Biotechnol. 2021, 25, 95–103. [Google Scholar]
- Cepero, A.; Ravoet, J.; Gómez-Moracho, T.; Bernal, J.L.; Del Nozal, M.J.; Bartolomé, C.; Maside, X.; Meana, A.; González-Porto, A.V.; De Graaf, D.C.; et al. Holistic screening of collapsing honey bee colonies in Spain: A case study. BMC Res. Notes 2014, 7, 649. [Google Scholar] [CrossRef]
- Renzi, M.T.; Amichot, M.; Pauron, D.; Tchamitchian, S.; Brunet, J.-L.; Kretzschmar, A.; Maini, S.; Belzunces, L.P. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined. Ecotoxicol. Environ. Saf. 2016, 127, 205–213. [Google Scholar] [CrossRef]
- Steinhauer, N.; Kulhanek, K.; Antúnez, K.; Human, H.; Chantawannakul, P.; Chauzat, M.-P.; VanEngelsdorp, D. Drivers of colony losses. Curr. Opin. Insect Sci. 2018, 26, 142–148. [Google Scholar] [CrossRef]
- Juszczak, L.; Socha, R.; Różnowski, J.; Fortuna, T.; Nalepka, K. Physicochemicals properties and quality parameters of herbhoneys. Food Chem. 2009, 113, 538–542. [Google Scholar] [CrossRef]
- Lukasiewicz, M.; Kowalski, S.; Makarewicz, M. Antimicrobial an antioxidant activity of selected Polish herbhoneys. LWT-Food Sci. Technol. 2015, 64, 547–553. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Bagan, R.; Bakier, S.; Swiecicka, I. Chemical composition and antimicrobial activity of Polish herbhoneys. Food Chem. 2015, 171, 84–88. [Google Scholar] [CrossRef]
- Majtan, J.; Bucekova, M.; Kafantaris, I.; Szweda, P.; Hammer, K.; Mossialos, D. Honey antibacterial activity: A neglected aspect of honey quality assurance as functional food. Trends Food Sci. Technol. 2021, 118 Pt B, 870–886. [Google Scholar] [CrossRef]
- Guldas, M.; Gurbuz, O.; Cakmak, I.; Yildiz, E.; Sen, H. Effects of honey enrichment with Spirulina platensis on phenolics, bioaccessibility, antioxidant capacity and fatty acids. LWT 2022, 153, 112461. [Google Scholar] [CrossRef]
- Tomczyk, M.; Miłek, M.; Sidor, E.; Kapusta, I.; Litwińczuk, W.; Puchalski, C.; Dżugan, M. The Effect of Adding the Leaves and Fruits of Morus alba to Rape Honey on Its Antioxidant Properties, Polyphenolic Profile, and Amylase Activity. Molecules 2020, 25, 84. [Google Scholar] [CrossRef] [PubMed]
- Grabek-Lejko, D.; Miłek, M.; Sidor, E.; Puchalski, C.; Dżugan, M. Antiviral and Antibacterial Effect of Honey Enriched with Rubus spp. as a Functional Food with Enhanced Antioxidant Properties. Molecules 2022, 27, 4859. [Google Scholar] [CrossRef] [PubMed]
- Dżugan, M.; Sowa, P.; Kwaśniewska, M.; Wesołowska, M.; Czernicka, M. Physicochemical Parameters and Antioxidant Activity of Bee Honey Enriched With Herbs. Plant Foods Hum. Nutr. 2017, 72, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Sowa, S.; Tarapatskyy, M.; Puchalski, C.; Jarecki, W.; Dżugan, M. A novel honey-based product enriched with coumarin from Melilotus flowers. J. Food Meas. Charact. 2019, 13, 1748–1754. [Google Scholar] [CrossRef]
- Raeessi, M.A.; Aslani, J.; Raeessi, N.; Gharaie, H.; Zarchi, A.A.K.; Raeessi, F. Honey plus coffee versus systemic steroid in the treatment of persistent post-infectious cough: A randomised controlled trial. Prim. Care Respir. J. 2013, 22, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Raeessi, M.A.; Raeessi, N.; Panahi, Y.; Gharaie, H.; Davoudi, S.M.; Saadat, A.; Zarchi, A.A.K.; Raeessi, F.; Ahmadi, S.M.; Jalalian, H. “Coffee plus Honey” versus “topical steroid” in the treatment of Chemotherapy-induced Oral Mucositis: A randomised controlled trial. BMC Complement. Altern. Med. 2014, 14, 293. [Google Scholar] [CrossRef] [PubMed]
- Pires, E.d.O., Jr.; Di Gioia, F.; Rouphael, Y.; Ferreira, I.C.F.R.; Caleja, C.; Barros, L.; Petropoulos, S.A. The Compositional Aspects of Edible Flowers as an Emerging Horticultural Product. Molecules 2021, 26, 6940. [Google Scholar] [CrossRef]
- Chinou, J.; Knoess, W.; Calapai, G. Regulation of herbal medicinal products in the EU: An up-to-date scientific review. Phytochem Rev. 2014, 13, 539–545. [Google Scholar] [CrossRef]
- Cechinel Filho, V. (Ed.) Natural Products as Source of Molecules with Therapeutic Potential: Research & Development, Challenges and Perspectives; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Tarapatskyy, M.; Kapusta, I.; Gumienna, A.; Puchalski, C. Assessment of the Bioactive Compounds in White and Red Wines Enriched with a Primula veris L. Molecules 2019, 24, 4074. [Google Scholar] [CrossRef]
- Tarapatskyy, M.; Gumienna, A.; Sowa, P.; Kapusta, I.; Puchalski, C. Bioactive Phenolic Compounds from Primula veris L.: Influence of the Extraction Conditions and Purification. Molecules 2021, 26, 997. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia (Ph. Eur.) 11th Edition. Available online: https://www.edqm.eu/en/european-pharmacopoeia-ph.-eur.-11th-edition (accessed on 18 November 2023).
- Jović, M.D.; Agatonovic-Kustrin, S.; Ristivojević, P.M.; Trifković, J.Đ.; Morton, D.W. Bioassay-Guided Assessment of Antioxidative, Anti-Inflammatory and Antimicrobial Activities of Extracts from Medicinal Plants via High-Performance Thin-Layer Chromatography. Molecules 2023, 28, 7346. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Bio. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Jańczak-Pieniążek, M.; Cichoński, J.; Michalik, P.; Chrzanowski, G. Effect of heavy metal stress on phenolic compounds accumulation in winter wheat plants. Molecules 2023, 28, 241. [Google Scholar] [CrossRef]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar]
- Dżugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant Activity as Biomarker of Honey Variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant Activity of Pomegranate Juice and Its Relationship with Phenolic Composition and Processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef] [PubMed]
- Aebisher, D.; Cichonski, J.; Szpyrka, E.; Masjonis, S.; Chrzanowski, G. Essential oils of seven lamiaceae plants and their antioxidant capacity. Molecules 2021, 26, 3793. [Google Scholar] [CrossRef]
- Sowbhagya, H.B.; Chitra, V.N. Enzyme-Assisted Extraction of Flavorings and Colorants from Plant Materials. Crit. Rev. Food Sci. Nutr. 2010, 50, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Boulebd, H. Comparative study of the radical scavenging behavior of ascorbic acid, BHT, BHA and Trolox: Experimental and theoretical study. J. Mol. Struct. 2020, 1201, 127210. [Google Scholar] [CrossRef]
- Socha, R.; Juszczak, L.; Pietrzyk, S.; Gałkowska, D.; Fortuna, T.; Witczak, T. Phenolic profile and antioxidant properties of Polish honeys. Int. J. Food Sci. Technol. 2011, 46, 528–534. [Google Scholar] [CrossRef]
- Wilczyńska, A. Phenolic content and antioxidant activity of di_erent types of polish honey—A short report. Polish J. Food Nutr. Sci. 2010, 60, 309–313. [Google Scholar]
- Jasicka-Misiak, I.; Makowicz, E.; Stanek, N. Chromatographic fingerprint, antioxidant activity, and colour characteristic of polish goldenrod (Solidago virgaurea L.) honey and flower. Eur. Food Res. Technol. 2018, 244, 1169–1184. [Google Scholar] [CrossRef]
- Lachman, J.; Orsák, M.; Hejtmánková, A.; Kovářová, E. Evaluation of antioxidant activity and total phenolics of selected Czech honeys. LWT-Food Sci. Technol. 2010, 43, 52–58. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. A comparative study on phenolic profile, vitamin C content and antioxidant activity of Italian honeys of different botanical origin. Int. J. Food Sci. Technol. 2013, 48, 1899–1908. [Google Scholar] [CrossRef]
- Srećković, N.Z.; Mihailović, V.B.; Katanić, S.J.S. Physico-chemical, antioxidant and antimicrobial properties of three different types of honey from central Serbia. Kragujevac J. Sci. 2019, 41, 53–68. [Google Scholar] [CrossRef]
- Kacániová, M.; Vukovic, N.; Bobková, A.; Fikselová, M.; Rovná, K.; Haščík, P.; Čuboň, J.; Hleba, L.; Bobko, M. Antimicrobial and antiradical activity of Slovakian honeydew honey samples. J. Microbiol. Biotechnol. Food Sci. 2011, 1, 354–368. [Google Scholar]
- Kavanagh, S.; Gunnoo, J.; Marques, P.T.; Stout, J.C.; White, B. Physicochemical Properties and Phenolic Content of Honey from Different Floral Origins and from Rural versus Urban Landscapes. Food Chem. 2019, 272, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.A.M.; Alvarado-Ortíz, U.C.; Blanco, B.T.; Castañeda, C.B.; Ruiz, Q.J.; Alvarado, Y.Á. Determinación de Compuestos Fenólicos, Flavonoides Totales y Capacidad Antioxidante En Mieles Peruanas de Diferentes Fuentes Florales. Rev. Soc. Quím. Perú 2014, 80, 287–297. [Google Scholar]
- Goslinski, M.; Nowak, D.; Kłebukowska, L. Antioxidant Properties and Antimicrobial Activity of Manuka Honey versus Polish Honeys. J. Food Sci. Technol. 2020, 57, 1269–1277. [Google Scholar] [CrossRef]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic compounds in honey and their relationship with antioxidant activity, botanical origin, and color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef]
- Silva, B.; Biluca, F.C.; Gonzaga, L.V.; Fett, R.; Dalmarco, E.M.; Caon, T.; Costa, A.C.O. In vitro anti-inflammatory properties of honey flavonoids: A review. Food Res. Int. 2021, 141, 110086. [Google Scholar] [CrossRef]
- Jan, N.; Andrabi, K.I.; John, R. Calendula officinalis-an important medicinal plant with potential biological properties. Proc. Indian Natn. Sci. Acad. 2017, 83, 769–787. [Google Scholar] [CrossRef]
- Pieroni, A.; Nedelcheva, A.; Hajdari, A.; Mustafa, B.; Scaltriti, B.; Cianfaglione, K.; Quave, C. Local knowledge on plants and domestic remedies in the mountain villages of Peshkopia (Eastern albania). J. Mt. Sci. 2014, 11, 180–193. [Google Scholar] [CrossRef]
- Rossi, A.; Dehm, F.; Kiesselbach, C.; Haunschild, J.; Sautebin, L.; Werz, O. The novel Sinupret® dry extract exhibits anti-inflammatory effectiveness in vivo. Fitoterapia 2012, 83, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Başbülbül, G.; Özmen, A.; Biyik, H.H.; Şen, Ö. Antimitotic and antibacterial effects of the Primula veris L. flower extracts. Caryologia 2008, 61, 88–91. [Google Scholar] [CrossRef]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/herbal/primulae-radix (accessed on 10 February 2024).
- Đorđević, S.; Nedić, N.; Pavlović, A.; Milojković-Opsenica, D.; Tešić, Ž.; Gašić, U. Honey with added value–enriched with rutin and quercetin from Sophora flower. J. Herb. Med. 2022, 34, 100580. [Google Scholar] [CrossRef]
- Wichtl, M. (Ed.) Herbal Drugs and Phytopharmaceuticals: A Handbook of Practice on a Scientific Basis, 3rd ed.; CRC Press: Stuttgart, Germany, 2004. [Google Scholar]
- Latypova, G.M.; Bychenkova, M.A.; Katayev, V.A.; Perfilova, V.N.; Tyurenkov, I.; Mokrousov, I.S.; Prokofiev, I.I.; Salikhov, S.M.; Iksanova, G.R. Composition and cardioprotective effects of Primula veris L. solid herbal extract in experimental chronic heart failure. Phytomedicine 2018, 54, 17–26. [Google Scholar] [CrossRef]
Latin name | Pulmonaria officinalis L. | Malva sylvestris L. | Primula veris L. | Tussilago farfara L. | Bellis perennis L. | Sambucus nigra L. |
Common name | Lungwort | High mallow | Cowslip primrose | Coltsfoot | Lawn daisy | Black elderberry |
Collection time | April | June | April | May | May | June |
Samples Enriched by Dried Flowers | Samples Enriched by Extract | |||||
---|---|---|---|---|---|---|
1% | 2% | 4% | 1% | 2% | 4% | |
Honey (g) | 99.0 | 98.0 | 96.0 | 98.0 | 98.0 | 98.0 |
Dried flowers (g) | 1.0 | 2.0 | 4.0 | - | - | - |
Extract (mL) | - | - | - | 0.5 | 1.0 | 2.0 |
Ethanol 50% (mL) | - | - | - | 1.5 | 1.0 | 0.0 |
Sample/Plant Species | Form of Enrichment | Concentration | ||
---|---|---|---|---|
1% | 2% | 4% | ||
Rapeseed honey | None | 1.61 ± 0.93 u | ||
Lungwort (Pulmonaria officinalis L.) | Extract | 5.83 ± 2.74 stu | 11.43 ± 2.14 oprst | 19.64 ± 1.79 klmn |
Dried flowers | 24.84 ± 1.59 jkl | 38.61 ± 5.26 gh | 67.10 ± 1.79 bc | |
High mallow (Malva sylvestris L.) | Extract | 5.16 ± 0.16 tu | 8.29 ± 0.36 rstu | 15.28 ± 1.31 mnopr |
Dried flowers | 9.64 ± 1.31 prstu | 17.09 ± 2.38 lmnop | 73.61 ± 3.64 b | |
Cowslip primrose (Primula veris L.) | Extract | 13.89 ± 0.95 noprs | 18.17 ± 1.75 klmno | 41.43 ± 0.08 gh |
Dried flowers | 25.79 ± 5.24 jk | 72.66 ± 4.96 b | 83.06 ± 0.99 a | |
Coltsfoot (Tussilago farfara L.) | Extract | 15.44 ± 0.04 mnopr | 29.60 ± 1.43 ij | 41.86 ± 2.34 fgh |
Dried flowers | 23.13 ± 2.82 jklm | 44.32 ± 0.36 efg | 58.73 ± 5.15 cd | |
Lawn daisy (Bellis perennis L.) | Extract | 7.74 ± 2.98 rstu | 13.06 ± 1.39 noprs | 22.88 ± 2.40 jklm |
Dried flowers | 14.90 ± 2.18 mnopr | 25.66 ± 4.03 jk | 42.14 ± 4.05 fgh | |
Black elderberry (Sambucus nigra L.) | Extract | 20.28 ± 0.59 klmn | 35.30 ± 2.56 hi | 51.31 ± 3.21 de |
Dried flowers | 21.27 ± 0.24 jklmn | 50.24 ± 0.87 ef | 66.27 ± 0.63 bc | |
Multifloral honey | None | 3.76 ± 0.58 s | ||
Lungwort (Pulmonaria officinalis L.) | Extract | 14.11 ± 0.87 nopr | 20.48 ± 0.48 lmn | 34.23 ± 2.81 gh |
Dried flowers | 28.84 ± 2.39 hij | 43.84 ± 2.29 de | 80.32 ± 0.58 a | |
High mallow (Malva sylvestris L.) | Extract | 8.87 ± 1.32 prs | 14.64 ± 1.81 nopr | 17.58 ± 0.35 lmn |
Dried flowers | 14.58 ± 0.84 nopr | 28.39 ± 2.58 ijk | 35.97 ± 1.58 fg | |
Cowslip primrose (Primula veris L.) | Extract | 8.35 ± 1.32 rs | 14.16 ± 0.29 nopr | 28.90 ± 0.58 hij |
Dried flowers | 50.29 ± 2.81 c | 74.64 ± 1.11 a | 80.26 ± 3.16 a | |
Coltsfoot (Tussilago farfara L.) | Extract | 13.06 ± 0.74 opr | 23.23 ± 0.77 jkl | 49.81 ± 4.84 cd |
Dried flowers | 14.71 ± 0.90 nopr | 22.35 ± 2.30 klm | 48.28 ± 4.76 cd | |
Lawn daisy (Bellis perennis L.) | Extract | 10.87 ± 1.00 opr | 9.35 ± 0.34 prs | 23.74 ± 0.32 jkl |
Dried flowers | 16.29 ± 0.68 mno | 26.93 ± 0.93 ijk | 35.39 ± 1.97 fg | |
Black elderberry (Sambucus nigra L.) | Extract | 14.90 ± 2.13 nop | 29.61 ± 2.32 ghij | 41.32 ± 1.58 ef |
Dried flowers | 32.45 ± 1.61 ghi | 47.00 ± 3.00 cde | 63.42 ± 0.19 b | |
Positive control | Form of enrichment | Concentration | ||
15 µM | 45 µM | 60 µM | ||
Trolox | None | 12.50 ± 0.13 | 35.00 ± 0.50 | 47.50 ± 0.50 |
BHT | None | 5.00 ± 0.05 | 7.50 ± 0.25 | 10.00 ± 0.05 |
Sample/Plant Species | Form of Enrichment | Concentration | ||
---|---|---|---|---|
1% | 2% | 4% | ||
Rapeseed honey | None | 15.98 ± 0.31 s | ||
Lungwort (Pulmonaria officinalis L.) | Extract | 25.00 ± 1.82 pr | 43.29 ± 1.18 klm | 58.04 ± 4.78 hi |
Dried flowers | 73.13 ± 3.20 ef | 99.51 ± 0.11 a | 99.85 ± 0.05 a | |
High mallow (Malva sylvestris L.) | Extract | 21.35 ± 0.94 rs | 40.29 ± 0.15 lmn | 70.91 ± 0.69 fg |
Dried flowers | 48.37 ± 2.71 jk | 69.58 ± 0.34 fg | 99.90 ± 0.00 a | |
Cowslip primrose (Primula veris L.) | Extract | 38.21 ± 3.89 mno | 54.59 ± 3.81 ij | 92.06 ± 0.84 bc |
Dried flowers | 84.86 ± 0.34 d | 99.90 ± 0.00 a | 100.00 ± 0.00 a | |
Coltsfoot (Tussilago farfara L.) | Extract | 31.51 ± 0.05 op | 55.32 ± 0.89 ij | 86.59 ± 4.44 cd |
Dried flowers | 64.30 ± 4.34 gh | 98.18 ± 0.25 ab | 99.70 ± 0.11 a | |
Lawn daisy (Bellis perennis L.) | Extract | 20.81 ± 0.31 rs | 34.21 ± 0.94 no | 70.22 ± 1.46 fg |
Dried flowers | 46.10 ± 2.42 kl | 70.76 ± 1.63 fg | 79.49 ± 1.48 de | |
Black elderberry (Sambucus nigra L.) | Extract | 54.59 ± 3.01 ij | 70.96 ± 4.98 fg | 94.67 ± 2.17 ab |
Dried flowers | 48.37 ± 2.71 gh | 69.58 ± 0.34 ab | 99.91 ± 0.00 a | |
Multifloral honey | None | 13.49 ± 0.59 o | ||
Lungwort (Pulmonaria officinalis L.) | Extract | 30.73 ± 1.16 mn | 55.68 ± 1.64 gh | 90.08 ± 6.84 bcd |
Dried flowers | 88.25 ± 0.00 cd | 99.61 ± 0.00 a | 99.85 ± 0.14 a | |
High mallow (Malva sylvestris L.) | Extract | 28.52 ± 1.16 n | 44.91 ± 3.08 ijkl | 56.33 ± 2.31 gh |
Dried flowers | 52.54 ± 2.21 ghi | 80.15 ± 1.86 de | 93.79 ± 1.54 abc | |
Cowslip primrose (Primula veris L.) | Extract | 41.18 ± 3.23 kl | 58.62 ± 9.78 fg | 78.13 ± 3.66 e |
Dried flowers | 97.41 ± 0.87 abc | 99.85 ± 0.05 a | 99.85 ± 0.05 a | |
Coltsfoot (Tussilago farfara L.) | Extract | 38.44 ± 2.71 lm | 59.63 ± 5.20 fg | 98.84 ± 0.19 ab |
Dried flowers | 44.03 ± 0.58 ijk | 54.13 ± 2.61 ghi | 98.84 ± 0.38 ab | |
Lawn daisy (Bellis perennis L.) | Extract | 28.76 ± 0.43 n | 41.57 ± 4.29 jkl | 66.86 ± 1.06 f |
Dried flowers | 50.77 ± 0.38 ghij | 66.28 ± 2.50 f | 83.38 ± 3.99 de | |
Black elderberry (Sambucus nigra L.) | Extract | 48.41 ± 2.84 hijk | 66.52 ± 1.20 f | 98.12 ± 0.72 ab |
Dried flowers | 79.38 ± 1.93 de | 98.89 ± 0.05 ab | 99.52 ± 0.10 a | |
Positive control | Form of enrichment | Concentration | ||
15 µM | 45 µM | 60 µM | ||
Trolox | None | 13.25 ± 0.75 | 47.50 ± 1.00 | 67.50 ± 1.00 |
BHT | None | 17.75 ± 0.85 | 55.75 ± 1.25 | 76.50 ± 1.25 |
Sample/Plant Species | Form of Enrichment | Concentration | ||
---|---|---|---|---|
1% | 2% | 4% | ||
Rapeseed honey | None | 2.24 ± 0.01 s | ||
Lungwort (Pulmonaria officinalis L.) | Extract | 4.72 ± 0.21 nop | 6.80 ± 0.24 jkl | 9.81 ± 0.32 fgh |
Dried flowers | 8.22 ± 0.16 i | 9.84 ± 0.31 gh | 12.23 ± 0.61 cd | |
High mallow (Malva sylvestris L.) | Extract | 3.55 ± 0.37 r | 5.12 ± 0.30 mno | 6.10 ± 0.15 klm |
Dried flowers | 4.70 ± 0.44 nop | 7.81 ± 0.45 ij | 9.16 ± 0.44 hi | |
Cowslip primrose (Primula veris L.) | Extract | 6.17 ± 0.43 klm | 8.76 ± 0.40 hi | 10.84 ± 0.32 efg |
Dried flowers | 1.15 ± 0.45 de | 13.44 ± 0.63 ab | 13.65 ± 0.32 a | |
Coltsfoot (Tussilago farfara L.) | Extract | 5.83 ± 0.4 lmn | 6.40 ± 0.16 kl | 11.00 ± 0.20 ef |
Dried flowers | 4.55 ± 0.26 opr | 8.78 ± 0.12 hi | 12.42 ± 0.63 bc | |
Lawn daisy (Bellis perennis L.) | Extract | 3.71 ± 0.34 pr | 5.23 ± 0.27 mno | 7.01 ± 0.33 jk |
Dried flowers | 7.98 ± 0.22 ij | 9.51 ± 0.20 h | 11.44 ± 0.55 cde | |
Black elderberry (Sambucus nigra L.) | Extract | 8.34 ± 0.20 i | 10.4 ± 0.52 efg | 12.18 ± 0.52 cd |
Dried flowers | 8.83 ± 0.10 hi | 12.2 ± 0.60 bcd | 14.16 ± 0.41 a | |
Multifloral honey | None | 3.56 ± 0.15 n | ||
Lungwort (Pulmonaria officinalis L.) | Extract | 3.76 ± 0.50 n | 6.52 ± 0.10 kl | 9.77 ± 0.58 gh |
Dried flowers | 5.71 ± 0.18 lm | 12.63 ± 0.31 cd | 13.03 ± 0.54 cd | |
High mallow (Malva sylvestris L.) | Extract | 5.32 ± 0.32 m | 8.54 ± 0.00 ij | 10.90 ± 0.33 efg |
Dried flowers | 5.58 ± 0.34 m | 8.12 ± 0.40 j | 13.68 ± 0.15 ab | |
Cowslip primrose (Primula veris L.) | Extract | 5.88 ± 0.11 lm | 9.50 ± 0.33 hi | 13.53 ± 0.20 abc |
Dried flowers | 7.50 ± 0.39 jk | 12.01 ± 0.26 de | 14.21 ± 0.13 ab | |
Coltsfoot (Tussilago farfara L.) | Extract | 5.42 ± 0.62 m | 6.87 ± 0.77 kl | 10.00 ± 0.35 gh |
Dried flowers | 8.37 ± 0.36 ij | 10.81 ± 0.42 fg | 13.33 ± 0.16 bc | |
Lawn daisy (Bellis perennis L.) | Extract | 3.69 ± 0.24 n | 6.58 ± 0.39 kl | 12.07 ± 0.13 de |
Dried flowers | 6.10 ± 0.66 lm | 10.50 ± 0.21 fgh | 13.13 ± 0.34 bcd | |
Black elderberry (Sambucus nigra L.) | Extract | 6.55 ± 0.32 kl | 10.44 ± 0.36 fgh | 13.40 ± 0.12 bc |
Dried flowers | 11.30 ± 0.10 ef | 14.30 ± 0.13 a | 14.61 ± 0.26 a |
Sample/Plant Species | Form of Enrichment | Concentration | ||
---|---|---|---|---|
1% | 2% | 4% | ||
Rapeseed honey | None | 8.42 ± 0.66 mn | ||
Lungwort (Pulmonaria officinalis L.) | Extract | 6.72 ± 0.21 no | 16.12 ± 0.90 j | 28.26 ± 0.63 e |
Dried flowers | 16.24 ± 0.56 j | 33.31 ± 0.67 d | 61.00 ± 0.86 a | |
High mallow (Malva sylvestris L.) | Extract | 5.85 ± 0.52 o | 10.64 ± 0.23 lm | 14.36 ± 0.68 jk |
Dried flowers | 9.62 ± 0.33 lm | 18.37 ± 0.75 i | 24.04 ± 0.92 g | |
Cowslip primrose (Primula veris L.) | Extract | 8.91 ± 0.14 m | 14.55 ± 0.92 jk | 24.71 ± 0.54 g |
Dried flowers | 14.65 ± 0.83 jk | 26.51 ± 0.80 ef | 33.62 ± 0.72 d | |
Coltsfoot (Tussilago farfara L.) | Extract | 11.34 ± 0.66 lm | 24.82 ± 0.09 fg | 37.55 ± 0.99 c |
Dried flowers | 9.36 ± 0.51 lm | 20.65 ± 0.63 h | 40.13 ± 0.88 b | |
Lawn daisy (Bellis perennis L.) | Extract | 10.30 ± 0.24 lm | 15.26 ± 0.32 jk | 23.18 ± 0.67 g |
Dried flowers | 9.26 ± 0.21 m | 14.92 ± 0.36 jk | 23.94 ± 0.38 g | |
Black elderberry (Sambucus nigra L.) | Extract | 13.64 ± 0.65 k | 24.60 ± 0.29 fg | 37.43 ± 0.43 c |
Dried flowers | 27.92 ± 0.82 e | 33.82 ± 0.61 d | 39.36 ± 0.42 bc | |
Multifloral honey | None | 4.33 ± 0.30 t | ||
Lungwort (Pulmonaria officinalis L.) | Extract | 9.03 ± 0.51 r | 21.12 ± 0.76 gh | 22.82 ± 0.77 fg |
Dried flowers | 15.35 ± 0.60 lm | 29.87 ± 0.58 d | 40.87 ± 0.78 a | |
High mallow (Malva sylvestris L.) | Extract | 4.32 ± 0.14 t | 9.10 ± 0.62 r | 16.86 ± 0.86 kl |
Dried flowers | 9.27 ± 0.33 r | 11.45 ± 0.56 p | 35.53 ± 0.61 b | |
Cowslip primrose (Primula veris L.) | Extract | 4.03 ± 0.45 t | 9.42 ± 0.31 r | 13.87 ± 0.47 mn |
Dried flowers | 14.64 ± 0.56 mn | 18.80 ± 0.71 ij | 24.38 ± 0.52 f | |
Coltsfoot (Tussilago farfara L.) | Extract | 5.05 ± 0.53 st | 11.77 ± 0.34 op | 26.84 ± 0.67 e |
Dried flowers | 13.05 ± 0.34 no | 20.65 ± 0.41 hi | 27.26 ± 0.43 e | |
Lawn daisy (Bellis perennis L.) | Extract | 6.32 ± 0.28 s | 9.20 ± 0.30 r | 22.44 ± 0.38 gh |
Dried flowers | 12.51 ± 0.55 op | 20.67 ± 0.68 hi | 30.82 ± 0.65 d | |
Black elderberry (Sambucus nigra L.) | Extract | 11.62 ± 0.68 op | 18.92 ± 0.66 ij | 36.90 ± 0.57 b |
Dried flowers | 17.44 ± 0.42 jk | 32.90 ± 0.39 c | 40.01 ± 0.89 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czernicka, M.A.; Sowa-Borowiec, P.; Dudek, T.; Cichoński, J.; Puchalski, C.; Chrzanowski, G. Antioxidant Capacity of Honey Enriched by Wildflowers. Appl. Sci. 2024, 14, 2018. https://doi.org/10.3390/app14052018
Czernicka MA, Sowa-Borowiec P, Dudek T, Cichoński J, Puchalski C, Chrzanowski G. Antioxidant Capacity of Honey Enriched by Wildflowers. Applied Sciences. 2024; 14(5):2018. https://doi.org/10.3390/app14052018
Chicago/Turabian StyleCzernicka, Maria Anna, Patrycja Sowa-Borowiec, Tomasz Dudek, Jan Cichoński, Czesław Puchalski, and Grzegorz Chrzanowski. 2024. "Antioxidant Capacity of Honey Enriched by Wildflowers" Applied Sciences 14, no. 5: 2018. https://doi.org/10.3390/app14052018
APA StyleCzernicka, M. A., Sowa-Borowiec, P., Dudek, T., Cichoński, J., Puchalski, C., & Chrzanowski, G. (2024). Antioxidant Capacity of Honey Enriched by Wildflowers. Applied Sciences, 14(5), 2018. https://doi.org/10.3390/app14052018