Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Pt/Al2O3 and NiMo/Al2O3 catalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4483 KB  
Article
Optimization of Polypropylene Waste Recycling Products as Alternative Fuels through Non-Catalytic Thermal and Catalytic Hydrocracking Using Fresh and Spent Pt/Al2O3 and NiMo/Al2O3 Catalysts
by Murtadha S. Al-Iessa, Bashir Y. Al-Zaidi, Riaydh S. Almukhtar, Zaidoon M. Shakor and Ihsan Hamawand
Energies 2023, 16(13), 4871; https://doi.org/10.3390/en16134871 - 22 Jun 2023
Cited by 12 | Viewed by 3422
Abstract
In this work, the conversion of waste polypropylene to alternative fuels (liquid and gas) was performed through non-catalytic thermal and catalytic hydrocracking over NiMo/Al2O3 and Pt/Al2O3 catalysts. The process was carried out in an autoclave batch reactor [...] Read more.
In this work, the conversion of waste polypropylene to alternative fuels (liquid and gas) was performed through non-catalytic thermal and catalytic hydrocracking over NiMo/Al2O3 and Pt/Al2O3 catalysts. The process was carried out in an autoclave batch reactor at a temperature of 450 °C and a pressure of 20 bar, which were selected based on experimental optimization. The spent catalyst was also successfully regenerated at 700 °C under a hot airflow. Experiments were conducted to determine the optimum conditions to completely separate the deactivated catalyst from the solid residue easily. The regenerated catalyst was reused to facilitate the economic cost reduction of the process. The reactivated catalysts have almost the same catalytic properties as the fresh catalysts; this was confirmed by several characterization techniques, such as TGA, XRD, SEM, EDX, BET and FTIR. The produced liquids/gases were quantified and classified into their fractions by the number of carbon atoms and gasoline to diesel ratio using GC/MS. The viscosity, density, API gravity, pour point and flash point of oil cuts were also investigated to evaluate the quality of the resulting liquid from the reactions. The NiMo/Al2O3 catalyst gave the highest liquid hydrocarbons yield of 86 wt%, while the highest weight products of gasoline range hydrocarbon fractions of 49.85 wt% were found over the Pt/Al2O3 catalyst. Almost the same catalytic behavior was found with the regenerated catalysts compared to the fresh catalysts. However, the highest gaseous products at 20.8 wt% were found in the non-catalytic thermal products with an increase in the diesel fuel range of 80.83 wt%. The kinetic model was implemented using six lumps and fifteen reactions, and the apparent activation energies for the gasoline and diesel fractions were calculated. In general, all primary and secondary reactions show greater activation energy values on the Pt/Al2O3 catalyst than on the NiMo/Al2O3 catalyst. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

15 pages, 2441 KB  
Article
Hydrodeoxygenation of Pyrolysis Oil in Supercritical Ethanol with Formic Acid as an In Situ Hydrogen Source over NiMoW Catalysts Supported on Different Materials
by Mingyuan Zhang, Xue Han, Huanang Wang, Yimin Zeng and Chunbao Charles Xu
Sustainability 2023, 15(10), 7768; https://doi.org/10.3390/su15107768 - 9 May 2023
Cited by 7 | Viewed by 2811
Abstract
Hydrodeoxygenation (HDO) is one of the most promising approaches to upgrading pyrolysis oils, but this process normally operates over expensive noble metal catalysts (e.g., Ru/C, Pt/Al2O3) under high-pressure hydrogen gas, which raises processing costs and safety concerns. In this [...] Read more.
Hydrodeoxygenation (HDO) is one of the most promising approaches to upgrading pyrolysis oils, but this process normally operates over expensive noble metal catalysts (e.g., Ru/C, Pt/Al2O3) under high-pressure hydrogen gas, which raises processing costs and safety concerns. In this study, a wood-derived pyrolysis oil was upgraded in supercritical ethanol using formic acid as an in situ hydrogen source at 300 °C and 350 °C, over a series of nickel–molybdenum-tungsten (NiMoW) catalysts supported on different materials, including Al2O3, activated carbon, sawdust carbon, and multiwalled nanotubes (MWNTs). The upgrading was also conducted under hydrogen gas (an ex situ hydrogen source) for comparison. The upgrading process was evaluated by oil yield, degree of deoxygenation (DOD), and oil qualities. The NiMoW/MWNT catalyst showed the best HDO performance among all the catalysts tested at 350 °C, with 74.8% and 70.9% of oxygen in the raw pyrolysis oil removed under in situ and ex situ hydrogen source conditions, respectively, which is likely owing to the large pore size and volume of the MWNT support material, while the in situ hydrogen source outperformed the ex situ hydrogen source in terms of upgraded oil yields and qualities, regardless of the catalysts employed. Full article
(This article belongs to the Special Issue Frontiers in Bio-Energy Production and Applications)
Show Figures

Figure 1

16 pages, 3638 KB  
Article
Transition Metal Sulfides- and Noble Metal-Based Catalysts for N-Hexadecane Hydroisomerization: A Study of Poisons Tolerance
by Aleksey Pimerzin, Aleksander Savinov, Anna Vutolkina, Anna Makova, Aleksandr Glotov, Vladimir Vinokurov and Andrey Pimerzin
Catalysts 2020, 10(6), 594; https://doi.org/10.3390/catal10060594 - 26 May 2020
Cited by 31 | Viewed by 5050
Abstract
Bifunctional catalysts on the base of transition metal sulfides (CoMoS and NiWS) and platinum as noble metal were synthesized via wetness impregnation of freshly synthesized Al2O3-SAPO-11 composites, supported with favorable acidic properties. The physical-chemical properties of the prepared materials [...] Read more.
Bifunctional catalysts on the base of transition metal sulfides (CoMoS and NiWS) and platinum as noble metal were synthesized via wetness impregnation of freshly synthesized Al2O3-SAPO-11 composites, supported with favorable acidic properties. The physical-chemical properties of the prepared materials were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), low-temperature N2 adsorption and high resolution transmission electron microscopy (HR TEM) methods. Catalytic properties were studied in n-hexadecane isomerization using a fixed-bed flow reactor. The catalytic poisons tolerance of transition metal sulfides (TMS)- and Pt-catalysts has been studied for sulfur and nitrogen, with the amount of 10–100 ppm addition to feedstock. TMS-catalysts show good stability during sulfur-containing feedstock processing, whereas Pt-catalyst loses much of its isomerization activity. Nitrogen-containing compounds in the feedstock has a significant impact on the catalytic activity of both TMS and Pt-based catalysts. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts for Petrochemical Synthesis and Oil Refining)
Show Figures

Figure 1

Back to TopTop