Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (4)

Search Parameters:
Keywords = Protaetia brevitarsis seulensis larva

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1920 KB  
Article
Protaetia brevitarsis seulensis Larvae Extract Attenuates Inflammatory Osteoclast Differentiation and Bone Loss
by Hyun Yang, Dong Ryun Gu, Hye Jin Yang, Wei Li, Younghoon Go, Ra-Yeong Choi, In-Woo Kim and Hyunil Ha
Nutrients 2025, 17(20), 3273; https://doi.org/10.3390/nu17203273 - 17 Oct 2025
Viewed by 419
Abstract
Background/Objectives: The larvae of Protaetia brevitarsis seulensis (PB), an edible insect, exhibit diverse bioactivities, but their effects on inflammatory bone loss remain unclear. We investigated whether a 70% ethanol extract of PB larvae (PBE) suppresses osteoclast differentiation and bone loss under inflammatory conditions. [...] Read more.
Background/Objectives: The larvae of Protaetia brevitarsis seulensis (PB), an edible insect, exhibit diverse bioactivities, but their effects on inflammatory bone loss remain unclear. We investigated whether a 70% ethanol extract of PB larvae (PBE) suppresses osteoclast differentiation and bone loss under inflammatory conditions. Methods: Osteoclast differentiation was assessed in co-cultures of mouse bone marrow cells and osteocytic cells stimulated with interleukin-1 (IL-1). Direct effects on osteoclast precursors were tested in bone marrow–derived macrophages exposed to receptor activator of nuclear factor-κB ligand (RANKL) or tumor necrosis factor-α (TNF-α). Skeletal effects were evaluated in a mouse model of lipopolysaccharide (LPS)-induced bone loss. Results: PBE inhibited IL-1–induced osteoclast differentiation in co-culture, reduced osteocytic RANKL expression and prostaglandin E2 (PGE2) production, and dampened early IL-1 signaling. In osteoclast precursors, PBE directly suppressed osteoclastogenesis driven by RANKL or TNF-α. In vivo, PBE attenuated LPS-induced bone loss and blunted the associated increases in bone RANKL and PGE2. Conclusions: PBE limits inflammatory osteoclastogenesis by downregulating PGE2 and RANKL production in osteoclast-supporting cells and directly inhibiting osteoclast precursor differentiation, thereby attenuating LPS-induced bone loss. These findings identify PBE as a food-derived candidate for managing inflammation-associated bone loss and support further preclinical and nutritional intervention studies. Full article
(This article belongs to the Special Issue Bone-Health-Promoting Bioactive Nutrition)
Show Figures

Figure 1

10 pages, 1555 KB  
Communication
Isolation and Quantification of L-Tryptophan from Protaetia brevitarsis seulensis Larvae as a Marker for the Quality Control of an Edible Insect Extract
by Hye Jin Yang and Wei Li
Insects 2025, 16(9), 905; https://doi.org/10.3390/insects16090905 - 29 Aug 2025
Cited by 1 | Viewed by 811
Abstract
Protaetia brevitarsis seulensis (Kolbe, 1886) larvae have traditionally been used in East Asian medicine and have recently attracted attention as functional food ingredients because of their pharmacological potential. However, chemical investigations remain limited, and no marker compounds have been established for quality control. [...] Read more.
Protaetia brevitarsis seulensis (Kolbe, 1886) larvae have traditionally been used in East Asian medicine and have recently attracted attention as functional food ingredients because of their pharmacological potential. However, chemical investigations remain limited, and no marker compounds have been established for quality control. This study aimed to isolate and identify a primary constituent from the 70% ethanol extract of P. brevitarsis (PBE) and to develop an analytical method for its quantification. Among the solvent-partitioned fractions, the n-butanol fraction (PBE-B) exhibited a major peak in HPLC analysis. The compound was purified through a combination of vacuum liquid chromatography (VLC), medium-pressure liquid chromatography (MPLC), and recycling preparative HPLC. Its structure was identified as L-tryptophan based on HR-ESI-MS and NMR spectroscopy. Quantitative analysis was conducted using HPLC-DAD under optimized analytical conditions, employing a Thermo Scientific™ Acclaim™ Polar Advantage II column and an acidified mobile phase (0.1% formic acid in water and methanol) to improve resolution. The method demonstrated excellent linearity (r2 > 0.9999), and the L-tryptophan content in PBE was determined to be 1.93 ± 0.05 μg/mg. The analyte was well separated with minimal interference, supporting the reproducibility of the method. These results indicate that L-tryptophan is a promising candidate Q-marker for the quality control of P. brevitarsis extracts. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

17 pages, 2764 KB  
Article
Impact of Edible Insect Polysaccharides on Mouse Gut Microbiota: A Study on White-Spotted Flower Chafer Larva (Protaetia brevitarsis seulensis) and Silkworm Pupa (Bombyx mori)
by Joon-Ha Lee, Hyojung Son, Sathiyamoorthy Subramaniyam, Hyun-Jung Lim, Sohyun Park, Ra-Yeong Choi, In-Woo Kim, Minchul Seo, Hae-Yong Kweon, Yongsoon Kim, Seong-Wan Kim, Jong-Soon Choi and Younhee Shin
Foods 2025, 14(1), 6; https://doi.org/10.3390/foods14010006 - 24 Dec 2024
Cited by 2 | Viewed by 1910
Abstract
The increasing global population and the environmental consequences of meat consumption have led to the exploration of alternative sources of protein. Edible insects have gained attention as a sustainable and nutritionally rich meat alternative. We investigated the effects of two commonly consumed insects, [...] Read more.
The increasing global population and the environmental consequences of meat consumption have led to the exploration of alternative sources of protein. Edible insects have gained attention as a sustainable and nutritionally rich meat alternative. We investigated the effects of two commonly consumed insects, Protaetia brevitarsis seulensis larva and Bombyx mori pupa, on beneficial gut microbiota growth, using whole 16s metagenome sequencing to assess diet-associated changes. Seven-week-old female C57BL/6J mice were administered the edible insects, along with fracto-oligosaccharide (FOS) as a positive control and sham (phosphate buffer saline (PBS)) as a negative control, to assess the relative abundance of insect-diet-associated gut microbes. In total, 567 genera and 470 species were observed, and among these, 15 bacterial genera were differentially abundant in all three groups. These results show that among the two insects, Bombyx mori pupa polysaccharides have a greater ability to regulate beneficial probiotics and next-generation probiotics. In particular, Lactococcus garvieae, which has promising effects on the gastrointestinal tracts of humans and animals, was significantly enriched in both Protaetia brevitarsis seulensis larva and Bombyx mori pupa polysaccharides, similar to fracto-oligosaccharide. The results suggest that the consumption of these insects, particularly polysaccharides, can enhance the growth of beneficial gut microbes, potentially leading to improved overall health in healthy populations. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

15 pages, 2829 KB  
Article
Neuroprotective Effect of Protaetia brevitarsis seulensis’ Water Extract on Trimethyltin-Induced Seizures and Hippocampal Neurodegeneration
by Sueun Lee, Young Hye Seo, Jun Ho Song, Wook Jin Kim, Ji Hye Lee, Byeong Cheol Moon, Mary Jasmin Ang, Sung Ho Kim, Changjong Moon, Jun Lee and Joong Sun Kim
Int. J. Mol. Sci. 2021, 22(2), 679; https://doi.org/10.3390/ijms22020679 - 12 Jan 2021
Cited by 30 | Viewed by 4176
Abstract
This study aimed to investigate whether the Protaetia brevitarsis seulensis (PB)’ water extract (PBWE) ameliorates trimethyltin (TMT)-induced seizures and hippocampal neurodegeneration. To investigate the potential neuroprotective effect of the PBWE in vitro, a lactate dehydrogenase (LDH) assay was conducted in TMT-treated primary cultures [...] Read more.
This study aimed to investigate whether the Protaetia brevitarsis seulensis (PB)’ water extract (PBWE) ameliorates trimethyltin (TMT)-induced seizures and hippocampal neurodegeneration. To investigate the potential neuroprotective effect of the PBWE in vitro, a lactate dehydrogenase (LDH) assay was conducted in TMT-treated primary cultures of mouse hippocampal neurons. In TMT-treated adult C57BL/6 mice, behavioral and histopathological changes were evaluated by seizure scoring and Fluoro-Jade C staining, respectively. In our in vitro assay, we observed that pretreating mice hippocampal neuron cultures with the PBWE reduced TMT-induced cytotoxicity, as indicated by the decreased LDH release. Furthermore, pretreatment with the PBWE alleviated seizures and hippocampal neurodegeneration in TMT-treated mice. The antioxidant activity of the PBWE increased in a dose-dependent manner; moreover, pretreatment with the PBWE mitigated the TMT-induced Nrf2 stimulation. In addition, six major compounds, including adenine, hypoxanthine, uridine, adenosine, inosine, and benzoic acid, were isolated from the PBWE, and among them, inosine and benzoic acid have been confirmed to have an essential antioxidative activity. In conclusion, the PBWE ameliorated TMT-induced toxicity in hippocampal neurons in both in vitro and in vivo assays, through a potential antioxidative effect. Our findings suggest that the PBWE may have pharmacotherapeutic potential in neurodegenerative diseases such as seizures or epilepsy. Full article
Show Figures

Graphical abstract

Back to TopTop