Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = Prevotella copri

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1842 KiB  
Article
Association Between Adherence Levels to the EAT-Lancet Diet in Habitual Intake and Selected Gut Bacteria in a Mexican Subpopulation
by Mariana Lares-Michel, Rafael Vázquez-Solórzano, Zyanya Reyes-Castillo, Leilani Clarissa Salaiza-Ambriz, Salvador Ramírez-Guerrero, Fatima Ezzahra Housni, Avilene Rodríguez-Lara and Jesús R. Huertas
Appl. Microbiol. 2025, 5(3), 62; https://doi.org/10.3390/applmicrobiol5030062 - 30 Jun 2025
Viewed by 304
Abstract
The EAT-Lancet diet is an outstanding model of a healthy, environmentally sustainable diet. However, its effects on the gut microbiota remain poorly explored. This study assessed the asso-ciation between adherence to the EAT-Lancet diet in habitual intake and the relative abundance of selected [...] Read more.
The EAT-Lancet diet is an outstanding model of a healthy, environmentally sustainable diet. However, its effects on the gut microbiota remain poorly explored. This study assessed the asso-ciation between adherence to the EAT-Lancet diet in habitual intake and the relative abundance of selected gut bacteria in a Mexican subpopulation. Fifty-four young adults (18–35 years) completed a validated Food Frequency Questionnaire (FFQ) and were nutritionally assessed. Participants were grouped into low, moderate, and high adherence levels to the EAT-Lancet diet. Blood samples were analysed for glucose and lipid profiles, and gDNA from faecal samples was analysed using Real-time qPCR to quantify gut bacteria. While no significant differences in bacterial abundance were observed across adherence levels, correlations emerged with increased adherence. Notably, Bifidobacterium negatively correlated with beef and lamb intake (rho −0.5, p < 0.05), and Akkermansia muciniphila negatively correlated with fish intake (rho −0.8, p < 0.05). Bilophila wadsworthia positively correlated with triglycerides, while Prevotella copri and Faecalibacterium prausnitzii negatively correlated with body fat and blood pressure, respectively. In addition, a non-significant trend toward a higher abundance of Firmicutes, Akkermansia muciniphila, and Prevotella copri was observed in the high-adherence group, whereas Lactobacillus tended to be more abundant in participants with low and moderate adherence. These findings suggest that adherence to the EAT-Lancet diet modulates gut microbiota composition. However, further controlled interventional studies are needed to confirm these effects and their implications for human health. Full article
Show Figures

Figure 1

18 pages, 2067 KiB  
Article
The Association Between Prevotella copri and Advanced Fibrosis in the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease
by David Zhang, Madelaine Leitman, Shrey Pawar, Simer Shera, Laura Hernandez, Jonathan P. Jacobs and Tien S. Dong
Nutrients 2025, 17(13), 2145; https://doi.org/10.3390/nu17132145 - 27 Jun 2025
Viewed by 615
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD), driven by obesity and metabolic syndrome, is increasingly prevalent and a significant contributor to liver fibrosis, cirrhosis, and liver-related mortality. Emerging research implicates the gut microbiome as a critical player in MASLD progression, yet specific [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD), driven by obesity and metabolic syndrome, is increasingly prevalent and a significant contributor to liver fibrosis, cirrhosis, and liver-related mortality. Emerging research implicates the gut microbiome as a critical player in MASLD progression, yet specific microbial drivers remain poorly understood. Here, we explore the role of Prevotella copri (P. copri) in MASLD progression through both human patient cohorts and a mouse model of diet-induced obesity. Methods/Results: Using 16S rRNA sequencing, we identified elevated P. copri abundance in MASLD patients with advanced fibrosis, linked with significant shifts in microbial diversity and bacterial network connectivity. To investigate causality, experimental colonization of P. copri in mice on a high-fat diet worsened MASLD progression, with P. copri-colonized mice showing significant increases in hepatic steatosis, liver triglyceride accumulation, and body weight, independent of caloric intake. At the molecular level, P. copri colonization downregulated key lipid metabolism genes, such as carnitine palmitoyltransferase 1 and adipose triglyceride lipase, and impaired tight intestinal junction integrity through the downregulation of occludin. Collectively, our findings position P. copri as a possible driver of MASLD progression by promoting hepatic steatosis through lipid and triglyceride accumulation and fibrosis through decreased tight junction integrity. These insights suggest a promising therapeutic avenue to target specific microbial signatures like P. copri to curb MASLD progression and mitigate the associated risk of advanced fibrosis. Full article
(This article belongs to the Special Issue Interaction Between Gut Microbiota and Obesity)
Show Figures

Figure 1

18 pages, 906 KiB  
Article
The Effect of the Ideal Food Pyramid on Gut Microbiota in Rheumatoid Arthritis Patients
by Ülger Kaçar Mutlutürk, Betül Çiçek and Gizem Cengiz
Life 2025, 15(3), 463; https://doi.org/10.3390/life15030463 - 14 Mar 2025
Viewed by 798
Abstract
Background: The gut microbiota composition of rheumatoid arthritis (RA) patients differs from healthy people, and diet is among the powerful environmental determinants that can alter the microbiota. The purpose of this clinical research was to identify the effect of the Ideal Food Pyramid [...] Read more.
Background: The gut microbiota composition of rheumatoid arthritis (RA) patients differs from healthy people, and diet is among the powerful environmental determinants that can alter the microbiota. The purpose of this clinical research was to identify the effect of the Ideal Food Pyramid on gut microbiota in RA, as well as its impact on disease activity, biochemical findings and anthropometric measurements. Methods: Thirty patients diagnosed with RA that met the inclusion criteria were randomized into diet and control groups and followed for 12 weeks. The gut microbiota composition was indicated by 16SrRNA gene sequencing. Results: At the end of this study, Simpson, Shannon and Chao-1 indices were higher in the diet group (16) than in the control group (14), although not significantly (p > 0.05). In the diet group, at phylum levels, the abundance of Bacteroides decreased while the abundance of Firmicutes increased. At species level, Prevotella copri, Bacteroides fragilis, Prevotella stercorea, Bacteroides uniformis decreased, while Faecalibacterium prausnitzii, Roseburia faecis, Bacteroides ovatus, Akkermansia muciniphila, Coprococcus eutactus, Gemmiger formicilis, Ruminococcus bromii, and Bifidobacterium longum species increased in the diet group. Conclusions: The Ideal Food Pyramid has been determined to have many clinical benefits for RA patients, especially for the gut microbiota. Full article
(This article belongs to the Special Issue Microbiota in Health and Disease)
Show Figures

Figure 1

11 pages, 1090 KiB  
Communication
Causal Association Between the Mucosal and Luminal Microbiotas from the Gastrointestinal Tract of Weaned Piglets Using Bayesian Network
by Shu Yoshimura, Takamitsu Tsukahara, Toru Takahashi, Hiroto Miura, So Morishima, Masaaki Kise, Jiye Shin, Yoshihiro Yahara and Ryo Inoue
Microorganisms 2025, 13(2), 256; https://doi.org/10.3390/microorganisms13020256 - 24 Jan 2025
Viewed by 930
Abstract
The aim of this study was to investigate the microbiota composition and its potential interactions across seven gut locations (stomachs, jejuna, ilea, ceca, proximal colons, distal colons, and recta) in weaned pigs to identify key influencing microbiotas. To compare between microbiota compositions, 16S [...] Read more.
The aim of this study was to investigate the microbiota composition and its potential interactions across seven gut locations (stomachs, jejuna, ilea, ceca, proximal colons, distal colons, and recta) in weaned pigs to identify key influencing microbiotas. To compare between microbiota compositions, 16S rRNA gene amplicon sequencing was performed. Six 70-day-old healthy crossbred (Duroc × Large White × Landrace) piglets were introduced as donors. A Bayesian network (BN) was used to examine the directional interactions among the microbiotas evaluated (seven mucosal and seven digesta microbiotas). Based on edge connectivity frequency, the microbiota in jejunal mucosa was the central hub node, influencing other microbiotas, especially the mucosal microbiotas of the ileum, cecum, distal colon, and rectum. The jejunal mucosa was dominated by Prevotella and lactobacilli, both recognized for their contributions to pig health. Among Prevotella, Prevotella copri and Prevotella sp. were predominant in jejunal mucosa (4.6% and 2.9%, respectively). Lactobacilli, including eight distinct species, were distributed throughout the gastrointestinal tract. Notably, Ligilactobacillus salivarius and Lactobacillus amylovorus, known as immune-enhancing bacteria, were abundant in jejunal mucosa (1.0% and 0.8%) and digestas (0.9% and 19.2%), respectively. The BN identified rectal mucosa and digestas as two terminal nodes, influenced by upstream microbiotas in the gastrointestinal tract. This finding supports the link between fecal microbiota and pig productivity, as the fecal microbiota, closely resembling the rectal microbiota, reflects the conditions of the microbiota throughout the gastrointestinal tract. Full article
(This article belongs to the Special Issue Gut Microbiota: Metagenomics to Study Ecology, 2nd Edition)
Show Figures

Figure 1

19 pages, 3402 KiB  
Article
Effect of Gardeniae Fructus Powder on Growth Performance, Antioxidant Capacity, Intestinal Barrier Function, and Colonic Microbiota of Weaned Piglets
by Shilong Liu, Min Tian, Ming Ma, Yueqin Qiu, Jiaxi Tang, Jing Hou, Qi Lu, Chaoyang Tian, Guohao Ye, Li Wang, Kaiguo Gao, Shining Guo, Zongyong Jiang and Xuefen Yang
Animals 2025, 15(2), 221; https://doi.org/10.3390/ani15020221 - 15 Jan 2025
Viewed by 1033
Abstract
The present study aimed to explore the effect of GF powder on the growth performance, diarrhea rate, antioxidant and immune capacity, and intestinal health of weaned piglets. A total of 144 weaned piglets (8.29 ± 0.11 kg) at 21 d old were randomly [...] Read more.
The present study aimed to explore the effect of GF powder on the growth performance, diarrhea rate, antioxidant and immune capacity, and intestinal health of weaned piglets. A total of 144 weaned piglets (8.29 ± 0.11 kg) at 21 d old were randomly assigned to four groups, with each treatment consisting of six replicate pens, with six piglets per pen, and each pen containing three barrows and three gilts. The piglets were fed a basal diet supplement with 0%, 0.4%, 0.6%, and 0.8% GF powder (n = 36). Our results indicated that compared with the basal diet, the F/G and diarrhea rate were remarkably decreased in the 0.8% GF group (p < 0.05). Serum biochemical parameters showed that supplementation with GF significantly increased the content of HDL-C (0.6 and 0.8% levels), IL-6 (0.8% level), IL-10 (0.4, 0.6, and 0.8% levels), Ig G (0.4% level), and Ig A (0.8% level) compared with the basal diet (p < 0.05). The index of antioxidant capacity showed that compared with a basal diet, supplementation with GF significantly decreased serum MDA content (0.4% and 0.8% levels) and jejunal and ileal MDA content (0.4%, 0.6%, and 0.8% levels) (p < 0.05). Additionally, compared with the basal diet, supplementation with GF significantly increased serum and ileal T-AOC content (0.4%, 0.6%, and 0.8% levels), serum T-SOD content (0.4% and 0.8% levels), ileal T-SOD content (0.4%, 0.6%, and 0.8% levels), CAT content (0.4%, 0.6%, and 0.8% levels), and jejunal GSH-Px content (0.8% level) (p < 0.05). The results of gene expression indicate that compared with the basal diet, supplementation with GF significantly increased Nrf 2 (0.4% level), NQO (0.4% level), SOD 1 (0.4% and 0.8% levels), and GCLC (0.4% level) and GCLM (0.8% level) abundance in jejunal mucosa; supplementation with GF significantly increased Nrf 2 (0.4%, 0.6%, and 0.8% levels), HO-1 (0.4% level), NQO (0.8% level), SOD 1 (0.4% and 0.8% levels), and GCLC (0.4% level) and GCLM (0.8% level) abundance in ileal mucosa (p < 0.05). Ulteriorly, the present results indicate that supplementation with GF at the 0.8% level significantly increased the villus height in the jejunum and ileum as well as the villus/crypt ratio in the ileum compared with the basal diet (p < 0.05). Compared with the basal diet, 0.4% GF significantly increased Occludin gene expression in ileal mucosa (p < 0.05), 0.6% GF significantly increased ZO-1, Claudin-1, and Occludin gene expression in jejunal mucosa (p < 0.05), and 0.8% GF significantly increased ZO-1 and Occludin gene expression in jejunal mucosa along with Occludin expression in ileal mucosa (p < 0.05). Furthermore, colonic microbiota composition showed that Shannon, observed species, and Chao 1 indices were significantly increased in the 0.8% GF group compared with the basal diet (p < 0.05). At the phylum level, in comparison with the basal diet, the relative abundance of Firmicutes significantly decreased in the 0.4%, 0.6%, and 0.8% GF groups, and Bacteroidetes increased in the 0.8% GF group (p < 0.05). At the genus level, compared with the basal diet, 0.6% and 0.8% GF significantly increased Prevotella abundance, and 0.6% GF significantly decreased Coprococcus abundance (p < 0.05). At the species level, compared with the basal diet, 0.8% GF significantly increased Prevotella copri abundance, and 0.4%, 0.6%, and 0.8% GF significantly decreased Blautia obeum abundance (p < 0.05). In summary, a dietary supplement with 0.8% Gardeniae Fructus powder significantly decreased the F/G and diarrhea rate and improved antioxidant capacity and intestinal barrier function, which may be associated with the improvement of the relative abundance of Prevotella copri. These findings indicate that Gardeniae Fructus powder may be used as a feed additive in swine weaning. Full article
(This article belongs to the Special Issue Exploration of Sustainable Feed Resources and Pig Dietary Strategies)
Show Figures

Figure 1

18 pages, 3957 KiB  
Article
Nutritional and Microbiome Effects of a Partial Substitution of Poultry Meat with Hydrolyzed Feather Meal in Dog Diets
by Fatemeh Balouei, Bruno Stefanon, Rosangela Armone, Andrea Randazzo and Biagina Chiofalo
Microorganisms 2025, 13(1), 121; https://doi.org/10.3390/microorganisms13010121 - 9 Jan 2025
Cited by 1 | Viewed by 1220
Abstract
Two extruded diets isoenergetic, isonitrogenous, and isolipidic were formulated with poultry meal (control diet) as the source of animal-origin proteins (160 g/kg of feed) or with 90 g/kg of poultry meal and 70 g/kg of hydrolyzed feather meal (treated diet) and were fed [...] Read more.
Two extruded diets isoenergetic, isonitrogenous, and isolipidic were formulated with poultry meal (control diet) as the source of animal-origin proteins (160 g/kg of feed) or with 90 g/kg of poultry meal and 70 g/kg of hydrolyzed feather meal (treated diet) and were fed to eight dogs (four adult female and four adult male English Setters). Body condition, muscle condition, and fecal consistency scores and body weight were monitored at the beginning of the trial and after 3, 7, 15, and 45 days, and no significant differences (p > 0.05) were observed between diets and between sex. Fecal samples, collected at the same time points, were analyzed for microbiota composition. No significant difference was calculated for the alpha diversity index between control diet and treated diet, nor for the diets × times of sampling interaction and for sex. Beta diversity was different (p-value 0.001) between the control and treated groups. The beta diversity between sexes was significantly different (p-value = 0.047). Linear Discriminant analysis effect size analysis revealed significant differences between dietary groups, identifying Clostridiales, Coprococcus, Bacteroides plebeius, Eubacterium biforme, Catenibacterium, and Prevotella copri as more abundant in the CTR diet, while Fusobacterium, Bacteroides, Fusobacteriaceae, Paraprevotellaceae, Enterococcus, Faecalibacterium, Enterobacteriaceae, Peptostreptococcaceae, and Clostridium spiroforme were more abundant in the treated diet. Sex differences were also significant, with 25 taxa differing between male and female dogs. Overall, the study underscores the impact of HFM and sex on gut microbiota composition in dogs, with potential implications for dietary interventions and microbiome research. Full article
(This article belongs to the Special Issue Gut Microbiota and Nutrients, 2nd Edition)
Show Figures

Figure 1

19 pages, 2203 KiB  
Article
Use of Different Synbiotic Strategies to Improve Gut Health in Dogs
by Miquel Montserrat-Malagarriga, Lorena Castillejos, Anna Salas-Mani, Celina Torre and Susana María Martín-Orúe
Animals 2024, 14(23), 3366; https://doi.org/10.3390/ani14233366 - 22 Nov 2024
Viewed by 1867
Abstract
This study evaluated the effects of two synbiotic strategies on the intestinal microbiota and immune response in Beagle dogs. Twelve dogs were subjected to a crossover design with three diets: a control diet (CON), a diet supplemented with fiber and B. velezensis DSM [...] Read more.
This study evaluated the effects of two synbiotic strategies on the intestinal microbiota and immune response in Beagle dogs. Twelve dogs were subjected to a crossover design with three diets: a control diet (CON), a diet supplemented with fiber and B. velezensis DSM 15544 (SYN), and the SYN diet with added porcine plasma (SYN+). Over three periods of seven weeks, fecal samples were analyzed for digestibility, short-chain fatty acids (SCFA), fecal markers, and microbiome composition, while blood samples were assessed for biochemical parameters, leucocytic counts including CD4/CD8 lymphocyte populations, and phagocytic activity. Both SYN and SYN+ diets increased the fecal volume without affecting the consistency and slightly reduced the organic matter and energy digestibility, while increasing SCFA concentrations and reducing branched-chain fatty acids. A microbiome analysis revealed no changes in the alpha diversity, but significant shifts in the beta diversity, with increases in beneficial taxa such as Faecalibacterium prausnitzii and reductions in potentially harmful bacteria like Prevotella copri. Immune response indicators showed increased fecal IgA and higher blood leukocyte counts, particularly lymphocytes and neutrophils, in the SYN diet group. Overall, both synbiotic strategies positively modulated the microbiota and immune response, though the addition of porcine plasma did not confer additional benefits. Full article
Show Figures

Figure 1

19 pages, 1840 KiB  
Article
Dietary Additive Combination for Dairy Calves After Weaning Has a Modulating Effect on the Profile of Short-Chain Fatty Acids in the Rumen and Fecal Microbiota
by Tainara Leticia Dos Santos, Jorge Augusto Rosina Favaretto, Andrei Lucas Rebelatto Brunetto, Emerson Zatti, Maiara Sulzbach Marchiori, Wanderson Adriano Biscola Pereira, Miklos Maximiliano Bajay and Aleksandro S. Da Silva
Fermentation 2024, 10(10), 528; https://doi.org/10.3390/fermentation10100528 - 17 Oct 2024
Cited by 2 | Viewed by 1521
Abstract
Background: This study aimed to verify whether adding a combination of additives (blend) to the diet of dairy calves after weaning can improve animal performance and health and influence the profile of ruminal short-chain fatty acids and intestinal microbiota. Methods: We used 35 [...] Read more.
Background: This study aimed to verify whether adding a combination of additives (blend) to the diet of dairy calves after weaning can improve animal performance and health and influence the profile of ruminal short-chain fatty acids and intestinal microbiota. Methods: We used 35 Holstein calves, males, with an average age of 70 days and an average body weight of 68 kg. The treatments used were negative control (T-0: without additive), positive control (T-Control: flavomycin + monensin), T-500 (500 g blend/ton), T-1000 (1000 g blend/ton), and T-1500 (1500 g blend/ton). The additives were classified as zootechnical (probiotics, prebiotics, and essential oils of cinnamon and oregano) and nutritional additive (minerals). Results: Weight gain and daily weight gain were higher for calves in the T-Control, T-500, and T-1000 groups. The concentration of heavy-chain immunoglobulins was higher in the blood of calves in the T-Control and T-500 groups when compared to the other groups. In the T-1500 groups, higher levels of reactive oxygen species were observed, while, in the T-0 and T-1500 groups, higher levels of TBARS and glutathione S-transferase activity were detected. The 15 abundant microorganisms in the calves’ feces, regardless of treatment, were Treponema suis, Treponema saccharophilum, Faecalibacterium prausnitzii, Pseudoflavonifractor sp., Roseburia faecis, Rikenellaceae, Enterobacteriaceae_f, Clostridium sp., Roseburia intestinalis, Aeromonadales_o, Prevotella copri, Treponema succinifaciens, Eubacterium sp., Treponema porcium, and Succinivibrio sp. The T-1000 group showed greater alpha diversity for the intestinal microbiota than T-Control, T-0, and T-500. The additive combination (T-1000) increased the bacterial activity in the ruminal fluid, and the animals of T-1000 had a higher concentration of short-chain fatty acids compared to T-0 and T-1500; this difference is because, in these calves, the production of acetic, butyric, and propionic acid increased. Conclusions: The combination of additives had positive effects on animal health, ruminal volatile fatty acid production, and intestinal microbiota, resulting in animals with more significant weight gain and feed efficiency. Full article
Show Figures

Figure 1

19 pages, 1034 KiB  
Article
Analysis of Gut Bacterial and Fungal Microbiota in Children with Autism Spectrum Disorder and Their Non-Autistic Siblings
by Mauricio Retuerto, Hilmi Al-Shakhshir, Janet Herrada, Thomas S. McCormick and Mahmoud A. Ghannoum
Nutrients 2024, 16(17), 3004; https://doi.org/10.3390/nu16173004 - 5 Sep 2024
Cited by 10 | Viewed by 3699
Abstract
Autism Spectrum Disorder (ASD) is a multifactorial disorder involving genetic and environmental factors leading to pathophysiologic symptoms and comorbidities including neurodevelopmental disorders, anxiety, immune dysregulation, and gastrointestinal (GI) abnormalities. Abnormal intestinal permeability has been reported among ASD patients and it is well established [...] Read more.
Autism Spectrum Disorder (ASD) is a multifactorial disorder involving genetic and environmental factors leading to pathophysiologic symptoms and comorbidities including neurodevelopmental disorders, anxiety, immune dysregulation, and gastrointestinal (GI) abnormalities. Abnormal intestinal permeability has been reported among ASD patients and it is well established that disturbances in eating patterns may cause gut microbiome imbalance (i.e., dysbiosis). Therefore, studies focusing on the potential relationship between gut microbiota and ASD are emerging. We compared the intestinal bacteriome and mycobiome of a cohort of ASD subjects with their non-ASD siblings. Differences between ASD and non-ASD subjects include a significant decrease at the phylum level in Cyanobacteria (0.015% vs. 0.074%, p < 0.0003), and a significant decrease at the genus level in Bacteroides (28.3% vs. 36.8%, p < 0.03). Species-level analysis showed a significant decrease in Faecalibacterium prausnitzii, Prevotella copri, Bacteroides fragilis, and Akkermansia municiphila. Mycobiome analysis showed an increase in the fungal Ascomycota phylum (98.3% vs. 94%, p < 0.047) and an increase in Candida albicans (27.1% vs. 13.2%, p < 0.055). Multivariate analysis showed that organisms from the genus Delftia were predictive of an increased odds ratio of ASD, whereas decreases at the phylum level in Cyanobacteria and at the genus level in Azospirillum were associated with an increased odds ratio of ASD. We screened 24 probiotic organisms to identify strains that could alter the growth patterns of organisms identified as elevated within ASD subject samples. In a preliminary in vivo preclinical test, we challenged wild-type Balb/c mice with Delftia acidovorans (increased in ASD subjects) by oral gavage and compared changes in behavioral patterns to sham-treated controls. An in vitro biofilm assay was used to determine the ability of potentially beneficial microorganisms to alter the biofilm-forming patterns of Delftia acidovorans, as well as their ability to break down fiber. Downregulation of cyanobacteria (generally beneficial for inflammation and wound healing) combined with an increase in biofilm-forming species such as D. acidovorans suggests that ASD-related GI symptoms may result from decreases in beneficial organisms with a concomitant increase in potential pathogens, and that beneficial probiotics can be identified that counteract these changes. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

21 pages, 3375 KiB  
Article
Obesity as Inducer of Cognitive Function Decline via Dysbiosis of Gut Microbiota in Rats
by Hoda B. Mabrok, Asmaa A. Ramadan, Ibrahim M. Hamed and Doha A. Mohamed
Brain Sci. 2024, 14(8), 807; https://doi.org/10.3390/brainsci14080807 - 12 Aug 2024
Cited by 5 | Viewed by 2039
Abstract
Diet-induced obesity is a global phenomenon that affects the population worldwide with manifestations at both the phenotypic and genotypic levels. Cognitive function decline is a major global health challenge. The relation between obesity and cognitive function is a debatable issue. The main goal [...] Read more.
Diet-induced obesity is a global phenomenon that affects the population worldwide with manifestations at both the phenotypic and genotypic levels. Cognitive function decline is a major global health challenge. The relation between obesity and cognitive function is a debatable issue. The main goal of the current research was to study the implications of obesity on cognitive function and gut microbiota diversity and its impact on plasma and brain metabolic parameters in rats. Obesity was induced in rats by feeding on a high-fat (HF) or a high-fat/high-sucrose (HFHS) diet. The results reveal that both the HF (0.683) and HFHS (0.688) diets were effective as obesity inducers, which was confirmed by a significant increase in the body mass index (BMI). Both diet groups showed dyslipidemia and elevation of oxidative stress, insulin resistance (IR), and inflammatory markers with alterations in liver and kidney functions. Obesity led to a reduction in cognitive function through a reduction in short-term memory by 23.8% and 30.7% in the rats fed HF and HFHS diets, respectively, and learning capacity and visuo-spatial memory reduced by 8.9 and 9.7 s in the rats fed an HF or HFHS diet, respectively. Bacteroidetes, Firmicutes, Proteobacteria, Fusobacteria, and Spirochaetes phyla were detected. The Firmicutes/Bacteroidetes ratio (F/B) significantly decreased in the HF group, while it increased in the HFHS group compared to the normal control. The two species, Bacteroides acidifaciens and Bacteroides ovatus, which are associated with IR, were drastically compromised by the high-fat/high-sucrose diet. Some species that have been linked to reduced inflammation showed a sharp decrease in the HFHS group, while Prevotella copri, which is linked to carbohydrate metabolism, was highly enriched. In conclusion: Obesity led to cognitive impairment through changes in short-term and visuo-spatial memory. A metagenomic analysis revealed alterations in the abundance of some microbial taxa associated with obesity, inflammation, and insulin resistance in the HF and HFHS groups. Full article
(This article belongs to the Section Nutritional Neuroscience)
Show Figures

Graphical abstract

14 pages, 861 KiB  
Review
Infectious and Commensal Bacteria in Rheumatoid Arthritis—Role in the Outset and Progression of the Disease
by Aleksandra Korzeniowska and Ewa Bryl
Int. J. Mol. Sci. 2024, 25(6), 3386; https://doi.org/10.3390/ijms25063386 - 16 Mar 2024
Cited by 4 | Viewed by 2796
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune disease with a complex outset. Besides the genetic susceptibility in its pathogenesis, various environmental factors also participate. Of these, in recent years, there have been increasing reports of the involvement of bacteria in the disease’s outset [...] Read more.
Rheumatoid arthritis (RA) is a chronic, autoimmune disease with a complex outset. Besides the genetic susceptibility in its pathogenesis, various environmental factors also participate. Of these, in recent years, there have been increasing reports of the involvement of bacteria in the disease’s outset and development, especially gut microbiota and oral pathogens. Most recent reports about bacteria participation in RA pathogenesis focus on Prevotella copri and Porphyromonas gingivalis. There are also reports about the involvement of respiratory and urinary tract pathogens. The exact mechanisms leading to RA development used by bacteria are not well known; however, some mechanisms by which bacteria can interact with the immune system are known and can potentially lead to RA development. The aim of this study is to provide a comprehensive review of the potential bacteria participating in RA development and the mechanism involved in that process. Full article
(This article belongs to the Special Issue Diverse Responses of Immune Cells to Bacterial Infections)
Show Figures

Graphical abstract

21 pages, 5552 KiB  
Article
Microbial Dysbiosis Linked to Metabolic Dysfunction-Associated Fatty Liver Disease in Asians: Prevotella copri Promotes Lipopolysaccharide Biosynthesis and Network Instability in the Prevotella Enterotype
by Heng Yuan, Xuangao Wu, Xichun Wang, Jun-Yu Zhou and Sunmin Park
Int. J. Mol. Sci. 2024, 25(4), 2183; https://doi.org/10.3390/ijms25042183 - 11 Feb 2024
Cited by 21 | Viewed by 3003
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is characterized by hepatic fat accumulation by metabolic dysfunction. The rising prevalence of MAFLD, especially among Asians, may be associated with changes in gut microbiota. We investigated gut microbiota [...] Read more.
Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is characterized by hepatic fat accumulation by metabolic dysfunction. The rising prevalence of MAFLD, especially among Asians, may be associated with changes in gut microbiota. We investigated gut microbiota characteristics and potential mechanisms leading to MAFLD development according to enterotypes. Case-control studies examining the gut microbiota composition between MAFLD and non-MAFLD participants were searched in public databases until July 2023. Gut microbiota was categorized into two enterotypes by principal component analysis. According to the enterotypes, LEfSe, ALDEx2, XGBoost, and DCiPatho were utilized to identify differential abundances and pathogenic microbes in the gut between the MAFLD and non-MAFLD groups. We analyzed microbial community networks with the SprCC module and predicted microbial functions. In the Prevotella enterotype (ET-P), 98.6% of Asians and 65.1% of Caucasians were associated with MAFLD (p = 0.049). MAFLD incidence was correlated with enterotype, age, obesity, and ethnicity (p < 0.05). Asian MAFLD patients exhibited decreased Firmicutes and Akkermansia muciniphila and increased Bacteroidetes and P. copri. The pathogenicity scores were 0.006 for A. muciniphila and 0.868 for P. copri. The Asian MAFLD group showed decreased stability and complexity in the gut microbiota network. Metagenome function analysis revealed higher fructose metabolism and lipopolysaccharide (LPS) biosynthesis and lower animal proteins and α-linolenic acid metabolism in Asians with MAFLD compared with the non-MAFLD group. LPS biosynthesis was positively correlated with P. copri (p < 0.05). In conclusion, P. copri emerged as a potential microbial biomarker for MAFLD. These findings enhance our understanding of the pathological mechanisms of MAFLD mediated through the gut microbiota, providing insights for future interventions. Full article
Show Figures

Figure 1

15 pages, 1279 KiB  
Article
Effects of Platycladus orientalis Leaf Extract on the Growth Performance, Fur-Production, Serum Parameters, and Intestinal Microbiota of Raccoon Dogs
by Xiao Li, Xiaoli Chen, Weitao Yuan, Xiuli Zhang, Aipeng Mao, Weigang Zhao, Naiquan Yao, Xuming Deng and Chao Xu
Animals 2023, 13(19), 3151; https://doi.org/10.3390/ani13193151 - 9 Oct 2023
Cited by 5 | Viewed by 2651
Abstract
Platycladus orientalis leaves are rich in flavonoids and polysaccharides, which offer high medicinal and nutritional benefits. This study aimed to investigate the impact of P. orientalis leaf extract (PLE) on the growth performance, fur quality, serum parameters, and intestinal microbiota of raccoon dogs. [...] Read more.
Platycladus orientalis leaves are rich in flavonoids and polysaccharides, which offer high medicinal and nutritional benefits. This study aimed to investigate the impact of P. orientalis leaf extract (PLE) on the growth performance, fur quality, serum parameters, and intestinal microbiota of raccoon dogs. Sixty healthy male black raccoon dogs, aged 85 (±5) days, were randomly assigned to four groups and fed a basal diet supplemented with 0, 0.25, 0.50, and 1.00 g/kg PLE for 125 days (designated as groups P0, P1, P2, and P3, respectively). The results revealed that the raccoon dogs in group P1 exhibited increased average daily gain and underfur length while showing a decreased feed/gain ratio compared to group P0 (p < 0.05). However, the heart index in group P2 was significantly lower than in group P0 (p < 0.05), and the kidney index and serum alanine aminotransferase activities in group P3 were higher than in groups P2 and P0 (p < 0.05), suggesting potential adverse effects at higher PLE dosages. Notably, dietary PLE supplementation led to a reduction in serum glucose concentrations (p < 0.05), which may have implications for glucose regulation. Furthermore, the study explored the impact of dietary supplementation with 0.25 g/kg PLE on the raccoon dogs’ intestinal microbiota using high-throughput sequencing. The results showed significant alterations in the microbial community structure, with a notable decrease in the abundance of Prevotella copri in response to 0.25 g/kg PLE supplementation (p < 0.05). In conclusion, supplementing raccoon dogs’ diet with 0.25 g/kg PLE can lead to improved growth performance and a positive influence on the intestinal microbiota. However, caution should be exercised regarding higher dosages, as they may have adverse effects on certain parameters. As a result, PLE holds promise as a potential feed additive for fur animal production. Full article
(This article belongs to the Special Issue Feed Additives, Performance and Welfare in Domestic Animals)
Show Figures

Figure 1

11 pages, 280 KiB  
Review
Decoding the Microbiome’s Influence on Rheumatoid Arthritis
by Donatella Coradduzza, Marco Bo, Antonella Congiargiu, Emanuela Azara, Maria Rosaria De Miglio, Gian Luca Erre and Ciriaco Carru
Microorganisms 2023, 11(9), 2170; https://doi.org/10.3390/microorganisms11092170 - 28 Aug 2023
Cited by 21 | Viewed by 3443
Abstract
The aim is better to understand and critically explore and present the available data from observational studies on the pathogenetic role of the microbiome in the development of rheumatoid arthritis (RA). The electronic databases PubMed, Scopus, and Web of Science were screened for [...] Read more.
The aim is better to understand and critically explore and present the available data from observational studies on the pathogenetic role of the microbiome in the development of rheumatoid arthritis (RA). The electronic databases PubMed, Scopus, and Web of Science were screened for the relevant literature published in the last ten years. The primary outcomes investigated included the influence of the gut microbiome on the pathogenesis and development of rheumatoid arthritis, exploring the changes in microbiota diversity and relative abundance of microbial taxa in individuals with RA and healthy controls (HCs). The risk of bias in the included literature was assessed using the GRADE criteria. Ten observational studies were identified and included in the qualitative assessment. A total of 647 individuals with RA were represented in the literature, in addition to 16 individuals with psoriatic arthritis (PsA) and 247 HCs. The biospecimens comprised fecal samples across all the included literature, with 16S rDNA sequencing representing the primary method of biological analyses. Significant differences were observed in the RA microbiome compared to that of HCs: a decrease in Faecalibacterium, Fusicatenibacter, Enterococcus, and Megamonas and increases in Eggerthellales, Collinsella, Prevotella copri, Klebsiella, Escherichia, Eisenbergiella, and Flavobacterium. There are significant alterations in the microbiome of individuals with RA compared to HCs. This includes an increase in Prevotella copri and Lactobacillus and reductions in Collinsella. Collectively, these alterations are proposed to induce inflammatory responses and degrade the integrity of the intestinal barrier; however, further studies are needed to confirm this relationship. Full article
Show Figures

Graphical abstract

24 pages, 7409 KiB  
Article
The Fate and Functionality of Alien tRNA Fragments in Culturing Medium and Cells of Escherichia coli
by Konstantin S. Shavkunov, Natalia Yu. Markelova, Olga A. Glazunova, Nikolay P. Kolzhetsov, Valery V. Panyukov and Olga N. Ozoline
Int. J. Mol. Sci. 2023, 24(16), 12960; https://doi.org/10.3390/ijms241612960 - 19 Aug 2023
Cited by 4 | Viewed by 2282
Abstract
Numerous observations have supported the idea that various types of noncoding RNAs, including tRNA fragments (tRFs), are involved in communications between the host and its microbial community. The possibility of using their signaling function has stimulated the study of secreted RNAs, potentially involved [...] Read more.
Numerous observations have supported the idea that various types of noncoding RNAs, including tRNA fragments (tRFs), are involved in communications between the host and its microbial community. The possibility of using their signaling function has stimulated the study of secreted RNAs, potentially involved in the interspecies interaction of bacteria. This work aimed at identifying such RNAs and characterizing their maturation during transport. We applied an approach that allowed us to detect oligoribonucleotides secreted by Prevotella copri (Segatella copri) or Rhodospirillum rubrum inside Escherichia coli cells. Four tRFs imported by E. coli cells co-cultured with these bacteria were obtained via chemical synthesis, and all of them affected the growth of E. coli. Their successive modifications in the culture medium and recipient cells were studied by high-throughput cDNA sequencing. Instead of the expected accidental exonucleolysis, in the milieu, we observed nonrandom cleavage by endonucleases continued in recipient cells. We also found intramolecular rearrangements of synthetic oligonucleotides, which may be considered traces of intermediate RNA circular isomerization. Using custom software, we estimated the frequency of such events in transcriptomes and secretomes of E. coli and observed surprising reproducibility in positions of such rare events, assuming the functionality of ring isoforms or their permuted derivatives in bacteria. Full article
(This article belongs to the Special Issue Bioinformatics of Unusual DNA and RNA Structures)
Show Figures

Figure 1

Back to TopTop