Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = Potassium phosphite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3921 KiB  
Article
First Report of Phytophthora mengei Causing Root Rot and Canker in Avocado (Persea americana) in Michoacán, Mexico
by Alejandra Mondragón-Flores, Alejandro Soto-Plancarte, Gerardo Rodríguez-Alvarado, Patricia Manosalva, Salvador Ochoa-Ascencio, Benjamin Hoyt, Nuria Gómez-Dorantes and Sylvia Patricia Fernández-Pavía
Microorganisms 2025, 13(7), 1471; https://doi.org/10.3390/microorganisms13071471 - 24 Jun 2025
Viewed by 659
Abstract
Mexico is the world’s leading producer of avocado (Persea americana); however, its productivity is threatened by various diseases, especially root rot caused by Phytophthora. While P. cinnamomi is the most commonly reported species worldwide, this study identified P. [...] Read more.
Mexico is the world’s leading producer of avocado (Persea americana); however, its productivity is threatened by various diseases, especially root rot caused by Phytophthora. While P. cinnamomi is the most commonly reported species worldwide, this study identified P. mengei for the first time as a causal agent of root rot and trunk canker in avocado orchards in the state of Michoacán, México. The morphological and molecular characterization of four isolates (three from canker and one from root rot) confirmed their identity: semi-papillate sporangia and plerotic oospores with paragynous antheridia, with sequence identities of 99.87% (ITS) and 100% (COI) with type sequences of P. mengei. Pathogenicity tests demonstrated the ability to infect roots, stems, and fruits, although with a low reisolation percentage in roots (10%), suggesting an opportunistic pathogen behavior. Sensitivity tests to potassium phosphite (EC50 of 3.67 μg/mL−1 a.i.) and metalaxyl-M (0.737 μg/mL−1 a.i.) revealed possible limitations for chemical control. These findings position P. mengei as an emerging pathogen with important implications for integrated crop management. To the best of our knowledge, this is the first report of P. mengei causing root rot and trunk canker in avocado in Michoacán, Mexico. Full article
(This article belongs to the Special Issue Feature Papers in Plant–Microbe Interactions in North America)
Show Figures

Figure 1

17 pages, 1473 KiB  
Article
Phosphite Compounds Suppress Anthracnose in Soybean Seeds Infected by Colletotrichum truncatum and Stimulate Growth and Defense Mechanisms
by Manoel Batista da Silva Júnior, Mário Lúcio Vilela de Resende, Edson Ampélio Pozza, Alexandre Ribeiro Maia de Resende, Gustavo César Dias Silveira, Jayne Deboni da Veiga, Júlia Marques Oliveira and André Costa da Silva
Plants 2025, 14(10), 1494; https://doi.org/10.3390/plants14101494 - 16 May 2025
Viewed by 503
Abstract
Soybean is one of the main agricultural commodities, and its productivity is limited by several diseases, such as anthracnose, which is caused by a complex of fungal species, with Colletotrichum truncatum being the most prevalent. Management is mainly carried out through chemical seed [...] Read more.
Soybean is one of the main agricultural commodities, and its productivity is limited by several diseases, such as anthracnose, which is caused by a complex of fungal species, with Colletotrichum truncatum being the most prevalent. Management is mainly carried out through chemical seed treatment. However, a reduction in the sensitivity of C. truncatum to fungicides was observed. Therefore, it is extremely important to search for products that are effective in controlling the disease. The objectives of this study were to evaluate the efficacy of commercial formulations of copper, potassium, manganese, and zinc phosphites in the treatment of soybean seeds infected by C. truncatum, as well as their direct fungitoxicity and ability to induce soybean defense mechanisms. For this purpose, seeds inoculated with C. truncatum were subjected to phosphites and a fungicide (carbendazim + thiram). The seeds were exposed to germination, health, and vigor tests. Fungal toxicity and the ability of phosphites to induce defense through the activities of catalase, peroxidase, and superoxide dismutase enzymes, as well as the levels of lignin and total soluble phenols, were also evaluated. Mn and Zn phosphites showed direct toxicity to C. truncatum and were as effective as the fungicide (carbendazim + thiram) in treating soybean seeds infected by the fungus. Mn phosphite induced the production of catalase (CAT), peroxidase (POX) and lignin, while Zn phosphite increased the production of CAT and POX. These results demonstrate the efficacy of Mn and Zn phosphites in controlling C. truncatum in infected soybean seeds, their direct toxic action, and their ability to induce resistance. Full article
Show Figures

Figure 1

13 pages, 2388 KiB  
Article
A Potassium Phosphite Solution as a Dual-Action Strategy Against Bean Anthracnose: Antifungal Activity and Defense Gene Priming
by Catalina Saldarriaga-Gómez, Paula Natalia Paez-Monroy and Adriana González-Almario
Horticulturae 2025, 11(5), 462; https://doi.org/10.3390/horticulturae11050462 - 25 Apr 2025
Viewed by 806
Abstract
Anthracnose in beans is an important disease caused by Colletotrichum lindemuthianum, which affects crop productivity and infects the plant in all growth stages, affecting the quality of the pod and grains. The most viable strategy to control this disease is using bean [...] Read more.
Anthracnose in beans is an important disease caused by Colletotrichum lindemuthianum, which affects crop productivity and infects the plant in all growth stages, affecting the quality of the pod and grains. The most viable strategy to control this disease is using bean cultivars; however, fungal variability is a limitation. Among the strategies proposed is using phosphite-based compounds, which can act as fungicides or priming stimulators. This study aimed to evaluate the antifungal activity of a phosphite-based solution (potassium phosphite (H3PO3), potassium hydroxide, and potassium citrate, in a formulation of phosphorus (P2O5) 28% and potassium (K2O) 26%) on C. lindemuthianum under in vitro conditions. In addition, its effects as a defense inducer in Sutagao bean plants was determined by changes in disease severity and the expression of PR1, PR3, PR4, and POD (defense-related genes) in plants treated with the phosphite solution before infection with the fungus. The results showed that the potassium phosphite solution had a statistically significant antifungal effect on C. lindemuthianum, reducing mycelial growth by 42% and germination by 48%, at a dose of 5 mL L−1. Foliar application of the phosphite-based solution showed a 17% reduction in anthracnose severity associated with high expression of the PR1, PR3, PR4, and POD defense genes, which increased in plants that were subsequently infected with the pathogen, demonstrating a priming effect. In conclusion, a potassium phosphite solution can be included in a management program to control bean anthracnose. Full article
(This article belongs to the Special Issue Plant–Microbial Interactions: Mechanisms and Impacts)
Show Figures

Figure 1

27 pages, 10980 KiB  
Article
Resistance in Soybean Against Infection by Phakopsora pachyrhizi Is Induced by a Phosphite of Nickel and Potassium
by Bianca Apolônio Fontes, Leandro Castro Silva, Bárbara Bezerra Menezes Picanço, Aline Vieira Barros, Isabela Maria Grossi Leal, Leonardo Packer Quadros and Fabrício Ávila Rodrigues
Plants 2024, 13(22), 3161; https://doi.org/10.3390/plants13223161 - 11 Nov 2024
Viewed by 1488
Abstract
Soybean (Glycine max (L.) Merr.) is one of the most profitable crops among the legumes grown worldwide. The occurrence of rust epidemics, caused by Phakopsora pachyrhizi, has greatly contributed to yield losses and an abusive use of fungicides. Within this context, [...] Read more.
Soybean (Glycine max (L.) Merr.) is one of the most profitable crops among the legumes grown worldwide. The occurrence of rust epidemics, caused by Phakopsora pachyrhizi, has greatly contributed to yield losses and an abusive use of fungicides. Within this context, this study investigated the potential of using a phosphite of nickel (Ni) and potassium (K) [referred to as induced resistance (IR) stimulus] to induce soybean resistance against infection by P. pachyrhizi. Plants were sprayed with water (control) or with IR stimulus and non-inoculated or inoculated with P. pachyrhizi. The germination of urediniospores was greatly reduced in vitro by 99% using IR stimulus rates ranging from 2 to 15 mL/L. Rust severity was significantly reduced from 68 to 78% from 7 to 15 days after inoculation (dai). The area under the disease progress curve significantly decreased by 74% for IR stimulus-sprayed plants compared to water-sprayed plants. For inoculated plants, foliar concentrations of K and Ni were significantly higher for IR stimulus treatment than for the control treatment. Infected and IR stimulus-sprayed plants had their photosynthetic apparatus (a great pool of photosynthetic pigments, and lower values for some chlorophyll a fluorescence parameters) preserved, associated with less cellular damage (lower concentrations of malondialdehyde, hydrogen peroxide, and anion superoxide) and a greater production of phenolics and lignin than plants from the control treatment. In response to infection by P. pachyrhizi, defense-related genes (PAL2.1, PAL3.1, CHIB1, LOX7, PR-1A, PR10, ICS1, ICS2, JAR, ETR1, ACS, ACO, and OPR3) were up-regulated from 7 to 15 dai for IR stimulus-sprayed plants in contrast to plants from the control treatment. Collectively, these findings provide a global picture of the enhanced capacity of IR stimulus-sprayed plants to efficiently cope with fungal infection at both biochemical and physiological levels. The direct effect of this IR stimulus against urediniospores’ germination over the leaf surface needs to be considered with the aim of reducing rust severity. Full article
(This article belongs to the Special Issue Plant Protection and Integrated Pest Management)
Show Figures

Figure 1

16 pages, 3640 KiB  
Article
Use of Phosphite Preparations to Protect Ash Seedlings Fraxinus excelsior L. against Phytophthora spp. and Hymenoscyphus fraxineus Pathogens
by Artur Pacia, Stanisław Drozdowski, Tadeusz Malewski, Piotr Borowik, Konrad Wilamowski, Sławomir Bakier and Tomasz Oszako
Forests 2024, 15(5), 829; https://doi.org/10.3390/f15050829 - 9 May 2024
Cited by 1 | Viewed by 1328
Abstract
In this study, greenhouse tests were conducted on 240 Fraxinus excelsior seedlings to investigate the simultaneous damage caused by thea pathogenic fungus and oomycetes. The experiment was performed under controlled conditions in the greenhouse of the Institute of Forest Research in Sękocin Stary [...] Read more.
In this study, greenhouse tests were conducted on 240 Fraxinus excelsior seedlings to investigate the simultaneous damage caused by thea pathogenic fungus and oomycetes. The experiment was performed under controlled conditions in the greenhouse of the Institute of Forest Research in Sękocin Stary (Poland). Three species of oomycetes were used for the experiment: Phytophthora plurivora, Phytophthora taxon hungarica, Phytophthora megasperma, and the fungus Hymenoscyphus fraxineus. Inoculations using the fungus were carried out on shoots and in plant pots in which the soil was mixed with the three Phytophthora species mentioned above, both simultaneously and separately, which made it possible to recognize the cumulative effect of the related plant infection. The aim of the study was to investigate the effect of phosphite-containing preparations on the health of common ash under conditions of threat to the roots by Phytophthora spp. and damage to the aerial parts of the plant by the fungus, as well as the possible occurrence of synergistic effects. Two types of protective preparations (Actifos and Phos60 of the nitrogen and potassium forms, respectively) were used. It was found that the inoculation of ash seedlings with the fungus H. fraxineus resulted in plant mortality, while the mixture of Phytophthora did not cause significant damage. It was confirmed that when pathogens coexist, a phenomenon occurs that leads to an acceleration in the development of disease symptoms and, thus, to plant mortality. In vitro tests confirmed the usefulness of phosphite preparations for the protection of ash seedlings. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

17 pages, 2640 KiB  
Article
Phenolic Extract from Olive Leaves as a Promising Endotherapeutic Treatment against Xylella fastidiosa in Naturally Infected Olea europaea (var. europaea) Trees
by Veronica Vizzarri, Annamaria Ienco, Cinzia Benincasa, Enzo Perri, Nicoletta Pucci, Erica Cesari, Carmine Novellis, Pierluigi Rizzo, Massimiliano Pellegrino, Francesco Zaffina and Luca Lombardo
Biology 2023, 12(8), 1141; https://doi.org/10.3390/biology12081141 - 17 Aug 2023
Cited by 9 | Viewed by 2688
Abstract
(1) Background: Since 2013, the pathogenic bacterium Xylella fastidiosa has been severely affecting olive production in Apulia, Italy, with consequences for the economy, local culture, landscape and biodiversity. The production of a phenolic extract from fresh olive leaves was employed for endotherapeutic injection [...] Read more.
(1) Background: Since 2013, the pathogenic bacterium Xylella fastidiosa has been severely affecting olive production in Apulia, Italy, with consequences for the economy, local culture, landscape and biodiversity. The production of a phenolic extract from fresh olive leaves was employed for endotherapeutic injection into naturally infected olive trees by Xylella fastidiosa in Apulia region, Italy. (2) Methods: The effectiveness of the extract was tested in vitro and in planta in comparison with analogous treatments based on garlic powder and potassium phosphite. (3) Results: The uptake of phenolic compounds from olive leaves through a trunk injection system device resulted in a statistically significant increase in leaf area index and leaf area density, as well as in the growth of newly formed healthy shoots. Plant growth-promoting effects were also observed for potassium phosphite. Moreover, the bacteriostatic activities of the phenolic extract and of the garlic-powder-based solution have been demonstrated in in vitro tests. (4) Conclusions: The results obtained and the contained costs of extraction make the endotherapeutic treatment with phenolic compounds a promising strategy for controlling X fastidiosa to be tested on a larger scale, although the experiments conducted in this study proved not to be suitable for centenary trees. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

17 pages, 3097 KiB  
Article
Potassium Phosphite Induces Tolerance to Water Deficit Combined with High Irradiance in Soybean Plants
by Priscila Ferreira Batista, Alan Carlos da Costa, Adinan Alves da Silva, Gabriel Martins Almeida, Maria Fernanda Marques Rodrigues, Emily Carolina Duarte Santos, Arthur Almeida Rodrigues and Caroline Müller
Agronomy 2023, 13(2), 382; https://doi.org/10.3390/agronomy13020382 - 28 Jan 2023
Cited by 5 | Viewed by 2722
Abstract
Changes in plant metabolism due to water deficit combined with other stresses, such as high irradiance and high temperatures, cause damage to the physiology and development of crops, which can lead to significant yield losses. The aim of this study was to determine [...] Read more.
Changes in plant metabolism due to water deficit combined with other stresses, such as high irradiance and high temperatures, cause damage to the physiology and development of crops, which can lead to significant yield losses. The aim of this study was to determine the potential of potassium phosphite (PP) to induce tolerance to water deficit combined with high irradiance in soybean plants. The experiment was carried out in an acclimatized growth chamber. Soybean plants, upon reaching the R1 developmental stage, received the following treatments: PP application (0 L ha−1–control; 0.6 L ha−1 PP; and 1.2 L ha−1 PP), two levels of PAR irradiance (650 µmol m−2 s−1–control; and 1500 µmol m−2 s−1–high irradiance (HI)), and three water availability levels (90% of field capacity (FC), and water deficit at 40% FC and 50% FC). The treatments were maintained for 12 days. The PP increased the photosynthetic rate of plants submitted to a dosage of 1.2 L ha−1 and stresses of 50% FC + HI. PP also decreased the intensity of lipid peroxidation, and rate of electrolyte leakage, which suggests stability of cell membranes. These responses may have occurred due to the activation of the antioxidant enzymes superoxide dismutase and peroxidase. Furthermore, the application of PP increased the proline concentrations, suggesting osmotic adjustment in response to stress. These results provide the first record of PP-induced tolerance in plants under combined water and HI stresses. PP proves to be a potential alternative method to reduce the harmful effects caused by the combined stresses of water deficit and high irradiance in soybean. Full article
(This article belongs to the Special Issue Crop and Vegetable Physiology under Environmental Stresses)
Show Figures

Figure 1

13 pages, 1344 KiB  
Article
Endophytic Yeasts for the Biocontrol of Phlyctema vagabunda in Apples
by Ximena Sepúlveda, Diego Silva, Ricardo Ceballos, Silvana Vero, María Dolores López and Marisol Vargas
Horticulturae 2022, 8(6), 535; https://doi.org/10.3390/horticulturae8060535 - 16 Jun 2022
Cited by 9 | Viewed by 2726
Abstract
Bull’s-eye rot, produced by Phlyctema vagabunda, is an important postharvest disease in apples. Current measures to control infection include synthetic fungicides, in addition to the application of copper hydroxide and potassium phosphite. However, growing public concern regarding fungicide residues in food has [...] Read more.
Bull’s-eye rot, produced by Phlyctema vagabunda, is an important postharvest disease in apples. Current measures to control infection include synthetic fungicides, in addition to the application of copper hydroxide and potassium phosphite. However, growing public concern regarding fungicide residues in food has generated interest in developing non-chemical alternative control methods; biological control is one of the most promising alternatives. In this research, native endophytic yeasts were isolated and evaluated for the biocontrol of P. vagabunda in apples. The mechanisms of action involved were also determined. Our research found 2 isolates, Vishniacozyma victoriae EPL4.5 and EPL29.5, which exhibited biocontrol activity against P. vagabunda at 20 °C in apples, the incidence of bull’s-eye rot was reduced by 39% and 61%, respectively, and the severity of the disease was decreased by 67% and 70%, respectively, when apples were inoculated with these yeasts 24 h before applying the pathogen. The main mechanisms that could be involved in the observed biocontrol activity are the ability to form biofilms and the production of volatile organic compounds. Full article
(This article belongs to the Special Issue Biological Control of Pre- and Postharvest Fungal Diseases)
Show Figures

Figure 1

13 pages, 4481 KiB  
Article
Enhance Systemic Resistance Significantly Reduces the Silverleaf Whitefly Population and Increases the Yield of Sweet Pepper, Capsicum annuum L. var. annuum
by Mohamed S. Zayed, El-Kazafy A. Taha, Montaser M. Hassan and El-Said M. Elnabawy
Sustainability 2022, 14(11), 6583; https://doi.org/10.3390/su14116583 - 27 May 2022
Cited by 10 | Viewed by 3122
Abstract
The silverleaf whitefly (Bemisia tabaci) is one of the most harmful insects attacking several economic plant crops worldwide, and it has developed a resistance toward several conventional insecticides. This study was conducted to estimate the impact of potassium phosphite (PK), effective [...] Read more.
The silverleaf whitefly (Bemisia tabaci) is one of the most harmful insects attacking several economic plant crops worldwide, and it has developed a resistance toward several conventional insecticides. This study was conducted to estimate the impact of potassium phosphite (PK), effective microorganisms (EMs), and salicylic acid (SA) as plant inducers, and imidacloprid (IMI) as a synthetic insecticide on the systemic acquired resistance of sweet pepper (Capsicum annuum var. annuum) crop, whitefly population, and crop yield under greenhouse conditions. The treatment plots were sprayed with IMI, PK, EMs, SA, and water (control) on the 27th day after planting, and dinotefuran was applied when the whitefly-infestation ratio reached 3.00%. The enzymes responsible for the internal defence system, whitefly population, and crop yield were determined. Our results confirmed the idea that the PK, EMs, and SA may induce the synthesis of plant enzymes responsible for the internal defence system. The IMI, PK, EMs, and SA significantly suppressed the whitefly population compared with the control. Moreover, the reduction percentages of the whitefly population were significantly higher when using IMI and PK than EMs and SA. The IMI, PK, EMs, and SA improved the crop yield. It could be concluded that PK, EMs, and SA enhanced the systemic acquired resistance in sweet pepper crop causing high defence against the population of whitefly and might be a potent alternative to conventional insecticides and compatible with an integrated pest management program. Full article
Show Figures

Figure 1

14 pages, 1339 KiB  
Article
Influence of Cultivar and Biocontrol Treatments on the Effect of Olive Stem Extracts on the Viability of Verticillium dahliae Conidia
by Ana López-Moral, Carlos Agustí-Brisach, Francisco M. Leiva-Egea and Antonio Trapero
Plants 2022, 11(4), 554; https://doi.org/10.3390/plants11040554 - 20 Feb 2022
Cited by 5 | Viewed by 2305
Abstract
The effect of olive (Olea europaea) stem extract (OSE) on the viability of conidia of Verticillium dahliae, the causal agent of Verticillium wilt of olive (VWO), is not yet well understood. Thus, the aim of this study was to determine [...] Read more.
The effect of olive (Olea europaea) stem extract (OSE) on the viability of conidia of Verticillium dahliae, the causal agent of Verticillium wilt of olive (VWO), is not yet well understood. Thus, the aim of this study was to determine the influence of the olive genotype (cultivar resistance) and the interaction between olive cultivars and biocontrol treatments on the effect of OSE on conidial germination of V. dahliae by in vitro sensitivity tests. To this end, OSE from cultivars Frantoio, Arbequina, and Picual, respectively tolerant, moderately susceptible, and highly susceptible to V. dahliae, were tested alone or after treatments with biological control agents (BCAs) and commercial products efficient at reducing the progress of VWO. Aureobasidium pullulans strain AP08, Phoma sp. strain ColPat-375, and Bacillus amyloliquefaciens strain PAB-24 were considered as BCAs. Aluminium lignosulfonate (IDAI Brotaverd®), copper phosphite (Phoscuprico®), potassium phosphite (Naturfos®), and salicylic acid were selected as commercial products. Our results indicate that the influence of biological treatments against the pathogen depends on the genotype, since the higher the resistance of the cultivar, the lower the effect of the treatments on the ability of OSE to inhibit the germination of conidia. In ‘Picual’, the BCA B. amyloliquefaciens PAB024 and copper phosphite were the most effective treatments in inhibiting conidia germination by the OSE. This work represents a first approach to elucidate the role of cultivar and biological treatments in modifying the effect on the pathogen of the endosphere content of olive plants. Full article
Show Figures

Figure 1

15 pages, 917 KiB  
Article
Combination of Potassium Phosphite and Reduced Doses of Fungicides Encourages Protection against Phytophthora infestans in Potatoes
by Neda Najdabbasi, Seyed Mahyar Mirmajlessi, Kevin Dewitte, Marika Mänd, Sofie Landschoot and Geert Haesaert
Agriculture 2022, 12(2), 189; https://doi.org/10.3390/agriculture12020189 - 28 Jan 2022
Cited by 4 | Viewed by 6065
Abstract
Late blight caused by the oomycete Phytophthora infestans is considered the biggest threat to potato farming worldwide. For susceptible cultivars, the disease is often managed by frequent applications of fungicides to reduce yield loss. The use of bio-based compounds that interfere with biologically [...] Read more.
Late blight caused by the oomycete Phytophthora infestans is considered the biggest threat to potato farming worldwide. For susceptible cultivars, the disease is often managed by frequent applications of fungicides to reduce yield loss. The use of bio-based compounds that interfere with biologically active systems is an innovative strategy for improving disease management. In the present work, the control of P. infestans infection on potatoes by potassium phosphite (KPhi) combined with recommended and reduced doses of active ingredients (Ais) from different fungicides was evaluated. The protective effects of different combinations were initially assessed in vivo and subsequently compared with a greenhouse screening. The active ingredients cyazofamid (CFD) and mancozeb (MCB), used at recommended and reduced doses, were less effective at reducing P. infestans infections than when combined with KPhi. In greenhouse trials, CFD, mandipropamid (MPD) and MCB at recommended doses were the most effective treatments when combined with KPhi; meanwhile, the combination of KPhi with azoxystrobin (AZ), benthiavalicarb-isopropyl/mancozeb (ISO/MCB), and CFD at reduced doses exhibited strong protective activity compared to other similar combinations. This decreased the severity of infection by P. infestans up to ~89%. Greenhouse experiments also demonstrated that a combination of KPhi and CFD at both doses caused the highest reduction in disease severity (up to ~90%) within 35 days of infection. In microplot experiments, KPhi delayed the progression of late blight in susceptible potato varieties; therefore, in the combined treatments AUDPC values were significantly lower than those obtained after applications with CFD doses, providing sufficient protection against late blight. Our data suggest that optimizing the formulation with addition of KPhi could result in a lower recommended dose. This would result in a reduction of the active compounds of the fungicides in potato farming. Furthermore, the impact of KPhi on late blight development makes it a potential component for incorporation into an integrated pest management system. Full article
(This article belongs to the Special Issue Integrated Pest Management of Field Crops: Series II)
Show Figures

Figure 1

6 pages, 1074 KiB  
Communication
Photocatalytic Alkylation of α-(Trifluoromethyl)Styrenes with Potassium Xanthogenates
by Vyacheslav I. Supranovich and Alexander D. Dilman
Catalysts 2021, 11(12), 1555; https://doi.org/10.3390/catal11121555 - 20 Dec 2021
Cited by 9 | Viewed by 3443
Abstract
A protocol for the coupling of potassium xanthogenates with α-(trifluoromethyl)styrenes in the presence of triethyl phosphite is reported. The reaction is carried out under blue light irradiation in the presence of organic photocatalyst 3DPAFIPN. The reaction proceeds via formation of alkyl radicals from [...] Read more.
A protocol for the coupling of potassium xanthogenates with α-(trifluoromethyl)styrenes in the presence of triethyl phosphite is reported. The reaction is carried out under blue light irradiation in the presence of organic photocatalyst 3DPAFIPN. The reaction proceeds via formation of alkyl radicals from readily available xanthogenate salts via oxidative desulfurization and cleavage of the carbon–oxygen bond assisted by triethyl phosphite. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

12 pages, 1457 KiB  
Article
Leaching Potential of Phosphite Fertilizer in Sandy Soils of the Southern Coastal Plain, USA
by Ariel A. Szogi, Paul D. Shumaker, Eric D. Billman and Philip J. Bauer
Environments 2021, 8(11), 126; https://doi.org/10.3390/environments8110126 - 16 Nov 2021
Cited by 2 | Viewed by 3920
Abstract
Novel biotechnology on transgenic plants capable of metabolizing phosphite (Phi), a reduced form of P, could improve the effectiveness of P fertilizers and reduce the P footprint in agriculture with the benefit of suppressing weed growth. However, potassium Phi (K-Phi) salts used as [...] Read more.
Novel biotechnology on transgenic plants capable of metabolizing phosphite (Phi), a reduced form of P, could improve the effectiveness of P fertilizers and reduce the P footprint in agriculture with the benefit of suppressing weed growth. However, potassium Phi (K-Phi) salts used as fertilizer are highly soluble in water. At the same time, sandy soils of the Southern Coastal Plain are vulnerable to leaching losses resulting from long-term Pi fertilizer application. We performed a replicated leaching trial using five soil materials that included three surface and two subsurface layers from cultivated topsoil (Ap horizon) with contrasting Phi and Pi sorption capacities. Each soil received three treatments K-Phi at rates 0 (control), 24, and 49 kg P ha−1 and leached twice with de-ionized water. All K-Phi-treated soils leached Phi except for the controls. A phosphorus saturation ratio (PSR) calculated from P, Al, and Fe in acid extracts indicated increasing environmental risk of Phi leaching in soils with lower Phi and Pi sorption capacities at rising rates of applied K-Phi. Because plants rapidly absorb Phi, further studies on the environmental impact of K-Phi fertilizer use should include the interaction of plants with soil properties and soil microbial activity at optimal Phi application rates for growing transgenic plants able to use Phi as a nutrient source. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Figure 1

18 pages, 3619 KiB  
Article
Phosphite Application Alleviates Pythophthora infestans by Modulation of Photosynthetic and Physio-Biochemical Metabolites in Potato Leaves
by Mohammad Aqa Mohammadi, Xiaoyun Han, Zhizhong Zhang, Yupei Xi, Mohammadreza Boorboori and Gefu Wang-Pruski
Pathogens 2020, 9(3), 170; https://doi.org/10.3390/pathogens9030170 - 28 Feb 2020
Cited by 26 | Viewed by 5244
Abstract
Potato late blight (Phytophtora infestans) is among the most severely damaging diseases of potato (Solanum tuberusom L.) worldwide, causing serious damages in potato leaves and tubers. In the present study, the effects of potassium phosphite (KPhi) applications on photosynthetic parameters, [...] Read more.
Potato late blight (Phytophtora infestans) is among the most severely damaging diseases of potato (Solanum tuberusom L.) worldwide, causing serious damages in potato leaves and tubers. In the present study, the effects of potassium phosphite (KPhi) applications on photosynthetic parameters, enzymatic and non-enzymatic antioxidant properties, hydrogen peroxide (H2O2) and malondialdehyde (MDA), total protein and total carbohydrate of potato leaves challenged with P. infestans pathogen were investigated. Potato leaves were sprayed five times with KPhi (0.5%) during the growing season prior to inoculation with P. infestans. The potato leaves were artificially infected by the LC06-44 pathogen isolate. The leaves were sampled at 0, 24, 48, 72 and 96 h after the infection for evaluations. P. infestans infection reduced chlorophyll (Chl) pigments contents, chlorophyll fluorescence, carotenoid (Car) and anthocyanin contents and increased the accumulation of H2O2 and MDA. Meanwhile, our result showed that KPhi treatment alleviated adverse effect of late blight in potato leaves. KPhi application also increased plant tolerance to the pathogen with improved photosynthetic parameters Chl a, b, total Chl, Car, and anthocyanin compare to controls. Moreover, the increased oxidative enzymes activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APx), and non-enzymatic substances such as phenolics, flavonoids and proline were found in KPhi treated plants, compared to untreated plants after inoculation. In addition, KPhi application followed by P. infestans infection also decreased the content of H2O2 and MDA, but increased the total protein and total carbohydrate contents in potato leaves. The consequence of current research indicated that KPhi played a vital role in pathogen tolerance, protecting the functions of photosynthetic apparatus by improved oxidative levels and physio-biochemical compounds in potato leaves. Full article
(This article belongs to the Special Issue Biology and Pathology of Phytophthora infestans)
Show Figures

Figure 1

14 pages, 3605 KiB  
Article
An Eco-Friendly Method to Get a Bio-Based Dicarboxylic Acid Monomer 2,5-Furandicarboxylic Acid and Its Application in the Synthesis of Poly(hexylene 2,5-furandicarboxylate) (PHF)
by Junhua Zhang, Qidi Liang, Wenxing Xie, Lincai Peng, Liang He, Zhibin He, Susmita Paul Chowdhury, Ryan Christensen and Yonghao Ni
Polymers 2019, 11(2), 197; https://doi.org/10.3390/polym11020197 - 23 Jan 2019
Cited by 28 | Viewed by 4684
Abstract
Recently, we have developed an eco-friendly method for the preparation of a renewable dicarboxylic acid 2,5-furandicarboxylic acid (FDCA) from biomass-based 5-hydroxymethylfrufural (HMF). In the present work, we optimized our reported method, which used phosphate buffer and Fe(OH)3 as the stabilizer to improve [...] Read more.
Recently, we have developed an eco-friendly method for the preparation of a renewable dicarboxylic acid 2,5-furandicarboxylic acid (FDCA) from biomass-based 5-hydroxymethylfrufural (HMF). In the present work, we optimized our reported method, which used phosphate buffer and Fe(OH)3 as the stabilizer to improve the stability of potassium ferrate, then got a purified FDCA (up to 99%) in high yield (91.7 wt %) under mild conditions (25 °C, 15 min, air atmosphere). Subsequently, the obtained FDCA, along with 1,6-hexanediol (HDO), which was also made from HMF, were used as monomers for the synthesis of poly(hexylene 2,5-furandicarboxylate) (PHF) via direct esterification, and triphenyl phosphite was used as the antioxidant to alleviate the discoloration problem during the esterification. The intrinsic viscosity, mechanical properties, molecular structure, thermal properties, and degradability of the PHFs were measured or characterized by Koehler viscometer, universal tensile tester, Nuclear Magnetic Resonance (NMR), Fourier-transform Infrared (FTIR), X-ray diffraction (XRD), Differential Scanning Calorimeter (DSC), Derivative Thermogravimetry (DTG), Scanning Electron Microscope (SEM), and weight loss method. The experimental evidence clearly showed that the furan-aromatic polyesters prepared from biomass-based HMF are viable alternatives to the petrochemical benzene-aromatic polyesters, they can serve as low-melting heat bondable fiber, high gas-barrier packaging material, as well as specialty material for engineering applications. Full article
Show Figures

Figure 1

Back to TopTop