Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = PolyQ diseases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3450 KiB  
Article
Elucidating Regulatory Mechanisms of Genes Involved in Pathobiology of Sjögren’s Disease: Immunostimulation Using a Cell Culture Model
by Daniel D. Kepple, Thomas E. Thornburg, Micaela F. Beckman, Farah Bahrani Mougeot and Jean-Luc C. Mougeot
Int. J. Mol. Sci. 2025, 26(12), 5881; https://doi.org/10.3390/ijms26125881 - 19 Jun 2025
Viewed by 469
Abstract
Sjögren’s disease (SjD) is an autoimmune disease of exocrine tissues. Prior research has shown that ETS proto-oncogene 1 (ETS1), STAT1, and IL33 may contribute to the disease’s pathology. However, the regulatory mechanisms of these genes remain poorly characterized. Our objective was to explore [...] Read more.
Sjögren’s disease (SjD) is an autoimmune disease of exocrine tissues. Prior research has shown that ETS proto-oncogene 1 (ETS1), STAT1, and IL33 may contribute to the disease’s pathology. However, the regulatory mechanisms of these genes remain poorly characterized. Our objective was to explore the mechanisms of SjD pathology and to identify dysfunctional regulators of these genes by immunostimulation of SjD and sicca relevant cell lines. We used immortalized salivary gland epithelial cell lines (iSGECs) from Sjögren’s disease (pSS1) and sicca (nSS2) patients, previously developed in our lab, and control cell line A253 to dose with immunostimulants IFN-γ or poly(I:C) (0 to 1000 ng/mL and 0 to 1000 µg/mL, respectively) over a 72 h time course. Gene expression was determined using qRT-PCR delta-delta-CT method based on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for mRNA and U6 small nuclear RNA 1 (U6) for miRNA, using normalized relative fold changes 48 h post-immunostimulation. Protein expression was quantified 72 h post-stimulation by Western blotting. Reference-based RNA-seq of immunostimulated pSS1 and nSS2 cells was performed to characterize the reactome of genes conserved across all used doses. The expression of ETS1 and STAT1 protein was upregulated (p < 0.05) in IFN-γ-treated pSS1 and nSS2, as compared to A253 cells. IFN-γ-treated nSS2 cell showed significant IL33 upregulation. Also, IL33 had a correlated (p < 0.01) U-shaped response for low-mid-range doses for IFN-γ- and poly(I:C)-treated pSS1 cells. RNA-seq showed 175 conserved differentially expressed (DE) genes between nSS2 and pSS1 immunostimulated cells. Of these, 44 were shown to interact and 39 were more abundant (p < 0.05) in pSS1 cells. Western blotting demonstrated nSS2 cells expressing ETS1 uniformly across treatments compared to pSS1 cells, despite similar mRNA abundance. miR-145b and miR-193b were significantly under-expressed in IFN-γ-treated nSS2 cells compared to pSS1 cells (p < 0.01). ETS1 and IL33 showed disproportionate mRNA and protein abundances between immunostimulated Sjögren’s disease-derived (pSS1), and sicca-derived (nSS2) cell lines. Such differences could be explained by higher levels of miR-145b and miR-193b present in pSS1 cells. Also, RNA-seq results suggested an increased sensitivity of pSS1 cells to immunostimulation. These results reflect current pathobiology aspects, confirming the relevance of immortalized salivary gland epithelial cell lines. Full article
Show Figures

Figure 1

20 pages, 4809 KiB  
Article
In Vitro Efficacy of PEI-Derived Lipopolymers in Silencing of Toxic Proteins in a Neuronal Model of Huntington’s Disease
by Luis C. Morales, Luv Modi, Saba Abbasi Dezfouli, Amarnath Praphakar Rajendran, Remant Kc, Vaibhavi Kadam, Simonetta Sipione and Hasan Uludağ
Pharmaceutics 2025, 17(6), 726; https://doi.org/10.3390/pharmaceutics17060726 - 30 May 2025
Viewed by 772
Abstract
Background: Huntington’s Disease (HD) is a neurodegenerative disorder caused by an abnormal extension of a CAG repeat stretch located in the exon 1 of the HTT (IT15) gene, leading to production of a mutated and misfolded Huntingtin protein (muHTT) with an abnormally elongated [...] Read more.
Background: Huntington’s Disease (HD) is a neurodegenerative disorder caused by an abnormal extension of a CAG repeat stretch located in the exon 1 of the HTT (IT15) gene, leading to production of a mutated and misfolded Huntingtin protein (muHTT) with an abnormally elongated polyglutamine (polyQ) region. This mutation causes muHTT to oligomerize and aggregate in the brain, particularly in the striatum and cortex, causing alterations in intracellular trafficking, caspase activation, and ganglioside metabolism, ultimately leading to neuronal damage and death and causing signs and symptoms such as chorea and cognitive dysfunction. Currently, there is no available cure for HD patients; hence, there is a strong need to look for effective therapies. Methods: This study aims to investigate the efficacy of siRNA-containing nano-engineered lipopolymers in selectively silencing the HTT expression in a neuronal model expressing a chimeric protein formed by the human mutated exon 1 of the HTT gene, tagged with GFP. Toxicity of lipopolymers was assessed using MTT assay, while efficacy of silencing was monitored using qRT-PCR, as well as Western blotting/flow cytometry. Changes in muHTT-GFP aggregation were observed using fluorescence microscopy and image analyses. Results: Here, we show that engineered lipopolymers can be used as delivery vehicles for specific siRNAs, decreasing the transcription of the mutated gene, as well as the muHTT protein production and aggregation, with Leu-Fect C being the most effective candidate amongst the assessed lipopolymers. Conclusions: Our findings have profound implications for genetic disorder therapies, highlighting the potential of nano-engineered materials for silencing mutant genes and facilitating molecular transfection across cellular barriers. This successful in vitro study paves the way for future in vivo investigations with preclinical models, offering hope for previously considered incurable diseases such as HD. Full article
Show Figures

Figure 1

25 pages, 6758 KiB  
Article
Dopamine Receptor D3 Induces Transient, mTORC1-Dependent Autophagy That Becomes Persistent, AMPK-Mediated, and Neuroprotective in Experimental Models of Huntington’s Disease
by Diego Luis-Ravelo, Felipe Fumagallo-Reading, Alejandro Febles-Casquero, Jonathan Lopez-Fernandez, Daniel J. Marcellino and Tomas Gonzalez-Hernandez
Cells 2025, 14(9), 652; https://doi.org/10.3390/cells14090652 - 29 Apr 2025
Viewed by 822
Abstract
Huntington disease’s (HD) is a neurodegenerative disorder caused by the expansion of a polyglutamine region (PolyQ) within the huntingtin protein (HTT). Mutated huntingtin (mHTT) is cytotoxic, particularly for striatal medium spiny neurons (MSNs), whose degeneration is the hallmark of HD. Autophagy inducers currently [...] Read more.
Huntington disease’s (HD) is a neurodegenerative disorder caused by the expansion of a polyglutamine region (PolyQ) within the huntingtin protein (HTT). Mutated huntingtin (mHTT) is cytotoxic, particularly for striatal medium spiny neurons (MSNs), whose degeneration is the hallmark of HD. Autophagy inducers currently available promote the clearance of toxic proteins. However, due to their low selectivity and the possibility that prolonged autophagy hampers essential processes in unaffected cells, researchers have questioned their benefits in neurodegenerative diseases. Since MSNs express dopamine receptors D2 (DRD2) and D3 (DRD3) and DRD2/DRD3 agonists may activate autophagy, here, we explored how healthy and mHTT-challenged cells respond to prolonged DRD2/DRD3 agonist treatment. Autophagy activation and its effects on mHTT/polyQ clearance were studied in R6/1 mice (a genetic model of HD), their wild-type littermates, and DRD2- and DRD3-HEK cells expressing a pathogenic (Q74) and a non-pathogenic (Q23) polyQ fragment of mHTT treated with the DRD2/DRD3 agonist pramipexole. Two forms of DRD3-mediated autophagy were found: a transient mTORC1-dependent in WT mice and Q23-DRD3-HEK cells and a persistent AMPK-ULK1-activated in R6/1 mice and Q74-DRD3-HEK cells. This also promoted a robust clearance of soluble mHTT/polyQ and neuroprotection in striatal neurons and DRD3-HEK cells. The findings indicate that DRD3-induced autophagy may be a safe, disease-modifying intervention in HD patients. Full article
(This article belongs to the Special Issue Molecular Therapeutic Advances for Neurodegenerative Diseases)
Show Figures

Figure 1

20 pages, 3867 KiB  
Article
Molecular Identification and Expression Analysis of NOD1/2 and TBK1 in Response to Viral or Bacterial Infection in the Spotted Knifejaw (Oplegnathus punctatus)
by Yu Song, Lei Wang, Kaimin Li, Mengqian Zhang and Songlin Chen
Animals 2025, 15(7), 1006; https://doi.org/10.3390/ani15071006 - 31 Mar 2025
Viewed by 492
Abstract
This study investigates the role of the Opnod1, Opnod2, and Optbk1 genes in antiviral and antibacterial immunity of spotted knifejaw (Oplegnathus punctatus). The expression patterns of these genes were analyzed using qRT-PCR in different tissues and at different time [...] Read more.
This study investigates the role of the Opnod1, Opnod2, and Optbk1 genes in antiviral and antibacterial immunity of spotted knifejaw (Oplegnathus punctatus). The expression patterns of these genes were analyzed using qRT-PCR in different tissues and at different time points. The open reading frame (ORF) of the Opnod1 gene was 2757 bp in length and encoded 918 amino acids, the ORF of the Opnod2 gene was 2970 bp in length and encoded 990 amino acids, while the Optbk1 gene was 2172 bp in length and encoded 723 amino acids. The Opnod1 and Opnod2 proteins contained three conserved domains (CARD, NOD, and LRR), and Optbk1 contained an STKc domain. The Opnod1, Opnod2, and Optbk1 genes were mainly expressed in immune-related tissues of spotted knifejaw, with the highest relative expression of the Opnod1 in the skin, the Opnod2 in the gill, and the Optbk1 in the liver. The expression of these genes changed significantly in the immune tissues following infection with SKIV-SD and Vibrio harveyi. In kidney cells, the Opnod1, Opnod2, and Optbk1 expression was up-regulated after stimulation by poly I:C and LPS in vitro. The results suggest that the NOD1/2-TBK1 signal pathway may play an important role in the resistance of the spotted knifejaw to virus and bacteria, providing valuable insights for disease-resistant breeding. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 5915 KiB  
Article
In Silico Analysis of miRNA-Regulated Pathways in Spinocerebellar Ataxia Type 7
by Verónica Marusa Borgonio-Cuadra, Aranza Meza-Dorantes, Nonanzit Pérez-Hernández, José Manuel Rodríguez-Pérez and Jonathan J. Magaña
Curr. Issues Mol. Biol. 2025, 47(3), 170; https://doi.org/10.3390/cimb47030170 - 2 Mar 2025
Viewed by 949
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease characterized by cerebellar ataxia and retinal degeneration, caused by an abnormal expansion of the CAG trinucleotide in the coding region of the ATXN7 gene. Currently, in silico analysis is used to explore mechanisms [...] Read more.
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease characterized by cerebellar ataxia and retinal degeneration, caused by an abnormal expansion of the CAG trinucleotide in the coding region of the ATXN7 gene. Currently, in silico analysis is used to explore mechanisms and biological processes through bioinformatics predictions in various neurodegenerative diseases. Therefore, the aim of this study was to identify candidate human gene targets of four miRNAs (hsa-miR-29a-3p, hsa-miR-132-3p, hsa-miR-25-3p, and hsa-miR-92a-3p) involved in pathways that could play an important role in SCA7 pathogenesis through comprehensive in silico analysis including the prediction of miRNA target genes, Gen Ontology enrichment, identification of core genes in KEGG pathways, transcription factors and validated miRNA target genes with the mouse SCA7 transcriptome data. Our results showed the participation of the following pathways: adherens junction, focal adhesion, neurotrophin signaling, endoplasmic reticulum processing, actin cytoskeleton regulation, RNA transport, and apoptosis and dopaminergic synapse. In conclusion, unlike previous studies, we highlight using a bioinformatics approach the core genes and transcription factors involved in the different biological pathways and which ones are targets for the four miRNAs, which, in addition to being associated with neurodegenerative diseases, are also de-regulated in the plasma of patients with SCA7. Full article
Show Figures

Figure 1

26 pages, 2514 KiB  
Article
Predicting Which Mitophagy Proteins Are Dysregulated in Spinocerebellar Ataxia Type 3 (SCA3) Using the Auto-p2docking Pipeline
by Jorge Vieira, Mariana Barros, Hugo López-Fernández, Daniel Glez-Peña, Alba Nogueira-Rodríguez and Cristina P. Vieira
Int. J. Mol. Sci. 2025, 26(3), 1325; https://doi.org/10.3390/ijms26031325 - 4 Feb 2025
Viewed by 1053
Abstract
Dysfunctional mitochondria are present in many neurodegenerative diseases, such as spinocerebellar ataxia type 3 (SCA3), also known as Machado–Joseph disease (MJD). SCA3/MJD, the most frequent neurodegenerative ataxia worldwide, is caused by the abnormal expansion of the polyglutamine tract (polyQ) at ataxin-3. This protein [...] Read more.
Dysfunctional mitochondria are present in many neurodegenerative diseases, such as spinocerebellar ataxia type 3 (SCA3), also known as Machado–Joseph disease (MJD). SCA3/MJD, the most frequent neurodegenerative ataxia worldwide, is caused by the abnormal expansion of the polyglutamine tract (polyQ) at ataxin-3. This protein is known to deubiquitinate key proteins such as Parkin, which is required for mitophagy. Ataxin-3 also interacts with Beclin1 (essential for initiating autophagosome formation adjacent to mitochondria), as well as with the mitochondrial cristae protein TBK1. To identify other proteins of the mitophagy pathway (according to the KEGG database) that can interact with ataxin-3, here we developed a pipeline for in silico analyses of protein–protein interactions (PPIs), called auto-p2docking. Containerized in Docker, auto-p2docking ensures reproducibility and reduces the number of errors through its simplified configuration. Its architecture consists of 22 modules, here used to develop 12 protocols but that can be specified according to user needs. In this work, we identify 45 mitophagy proteins as putative ataxin-3 interactors (53% are novel), using ataxin-3 interacting regions for validation. Furthermore, we predict that ataxin-3 interactors from both Parkin-independent and -dependent mechanisms are affected by the polyQ expansion. Full article
Show Figures

Figure 1

13 pages, 5307 KiB  
Article
Localization of Potential Energy in Hydrogen Bonds of the ATXN2 Gene
by Mikhail Drobotenko, Oksana Lyasota, Stepan Dzhimak, Alexandr Svidlov, Mikhail Baryshev, Olga Leontyeva and Anna Dorohova
Int. J. Mol. Sci. 2025, 26(3), 933; https://doi.org/10.3390/ijms26030933 - 23 Jan 2025
Cited by 2 | Viewed by 787
Abstract
It is known that a number of neurodegenerative diseases, also called diseases of waiting, are associated with the expansion of the polyQ tract in the first exon of the ATXN2 gene. In the expanded polyQ tract, the probability of occurrence of non-canonical configurations [...] Read more.
It is known that a number of neurodegenerative diseases, also called diseases of waiting, are associated with the expansion of the polyQ tract in the first exon of the ATXN2 gene. In the expanded polyQ tract, the probability of occurrence of non-canonical configurations (hairpins, G-quadruplexes, etc.) is significantly higher than in the normal one. Obviously, for their formation, the occurrence of open states (OSs) is necessary. Calculations were made for these processes using the angular mechanical model of DNA. It has been established that the probability of the large OS zones genesis in a DNA segment depends not only on the “strength” of the nucleotide sequence but also on the factors determining the dynamics of DNA; localization of the energy in the DNA molecule and the potential energy of interaction between pairs of nitrogenous bases also depend on environmental parameters. The potential energy of hydrogen bonds does not remain constant, and oscillatory movements lead to its redistribution and localization. In this case, OSs effectively dissipate the energy of oscillations. Thus, mathematical modeling makes it possible to calculate the localization of mechanical energy, which is necessary for the OSs formation, and to predict the places of their origin, taking into account the mechanical oscillations of the DNA molecule. Full article
Show Figures

Figure 1

17 pages, 5325 KiB  
Article
Erinacine A-Enriched Hericium erinaceus Mycelium Ethanol Extract Lessens Cellular Damage in Cell and Drosophila Models of Spinocerebellar Ataxia Type 3 by Improvement of Nrf2 Activation
by Yu-Ling Wu, Hai-Lun Sun, Jui-Chih Chang, Wei-Yong Lin, Pei-Yin Chen, Chin-Chu Chen, Li-Ya Lee, Chien-Chun Li, Mingli Hsieh, Haw-Wen Chen, Ya-Chen Yang, Chin-San Liu and Kai-Li Liu
Antioxidants 2024, 13(12), 1495; https://doi.org/10.3390/antiox13121495 - 7 Dec 2024
Cited by 6 | Viewed by 2818
Abstract
Spinocerebellar ataxia type 3 (SCA3), caused by the abnormal expansion of polyglutamine (polyQ) in the ataxin-3 protein, is one of the inherited polyQ neurodegenerative diseases that share similar genetic and molecular features. Mutant polyQ-expanded ataxin-3 protein is prone to aggregation in affected neurons [...] Read more.
Spinocerebellar ataxia type 3 (SCA3), caused by the abnormal expansion of polyglutamine (polyQ) in the ataxin-3 protein, is one of the inherited polyQ neurodegenerative diseases that share similar genetic and molecular features. Mutant polyQ-expanded ataxin-3 protein is prone to aggregation in affected neurons and is predominantly degraded by autophagy, which is beneficial for neurodegenerative disease treatment. Not only does mutant polyQ-expanded ataxin-3 increase susceptibility to oxidative cytotoxicity, but it also hampers antioxidant potency in neuronal cells. Nuclear factor erythroid-derived 2-like 2 (Nrf2), a master transcription factor that controls antioxidant and detoxification gene expression, plays a crucial role in neuroprotection in SCA3 and other neurodegenerative diseases. The present data showed that treatment with erinacine A-enriched Hericium erinaceus mycelium ethanol extract (HEME) extended longevity and improved locomotor activity in ELAV-SCA3tr-Q78 transgenic Drosophila. Moreover, HEME treatment enhanced antioxidant potency and autophagy, which, in turn, corrected levels of mutant polyQ-expanded ataxin-3 and restrained protein aggregation in both cell and Drosophila models of SCA3. Markedly, HEME increased the activation of Nrf2. Silencing Nrf2 protein expression negated most of the promising effects of HEME on SK-N-SH-MJD78 cells, highlighting the critical role of increased Nrf2 activation in the efficacy of HEME treatment. These findings suggest that HEME has therapeutic potential in SCA3 by enhancing autophagic and Nrf2-mediated antioxidant pathways, which may also influence neurodegenerative progression in other polyQ diseases. Full article
Show Figures

Graphical abstract

14 pages, 1271 KiB  
Article
Selection of Reference Genes by Quantitative Real-Time PCR in Different Cell Lines from Humpback Grouper (Cromileptes altivelis)
by Xiangyu Du, Han Zhang, Longfei Zhu, Zhenjie Cao, Chen Zhang, Ying Wu, Yongcan Zhou and Yun Sun
Fishes 2024, 9(12), 491; https://doi.org/10.3390/fishes9120491 - 30 Nov 2024
Viewed by 843
Abstract
Humpback grouper (Cromileptes altivelis) is an economically important fish, but the increasing density of its farming has led to more severe disease outbreaks. To address this challenge, we established brain (CAB) and kidney (CAK) cell lines in our laboratory previously, providing [...] Read more.
Humpback grouper (Cromileptes altivelis) is an economically important fish, but the increasing density of its farming has led to more severe disease outbreaks. To address this challenge, we established brain (CAB) and kidney (CAK) cell lines in our laboratory previously, providing a valuable tool for in vitro studies on immune responses. In this study, we used quantitative real-time polymerase chain reaction (qRT-PCR) to identify the optimal reference gene from six reference genes for CAB and CAK cells, under both normal conditions and after stimulation with LPS or Poly I: C. The qRT-PCR data were analyzed using geNorm, NormFinder, and BestKeeper software (Version 3.5) to ensure comprehensve evaluation. The results showed that RPL13 was the most stable reference gene for both CAB and CAK cells under normal conditions. Following LPS stimulation, TTLL1 was the best reference gene for CAB cells, while RPL13 remained the most suitable for CAK cells. For Poly I: C stimulation, EF1A and Actin were identified as the most stable reference genes for CAB and CAK cells, respectively. To confirm the reliability of the selected reference genes, we analyzed the expression of the cytokine genes IL-6 and IFN-h, demonstrating the dependability of these reference genes. This study lays a solid foundation for exploring gene expression patterns in humpback grouper cell lines under various experimental conditions, providing essential insights for future research into immune processes and disease control strategies in aquaculture. Full article
(This article belongs to the Special Issue Advances in Pathology of Aquatic Animals)
Show Figures

Figure 1

18 pages, 2184 KiB  
Article
Docosahexaenoic Acid (DHA) Supplementation in a Triglyceride Form Prevents from Polyglutamine-Induced Dysfunctions in Caenorhabditis elegans
by Ignasi Mora, Alex Teixidó, Rafael P. Vázquez-Manrique, Francesc Puiggròs and Lluís Arola
Int. J. Mol. Sci. 2024, 25(23), 12594; https://doi.org/10.3390/ijms252312594 - 23 Nov 2024
Cited by 1 | Viewed by 1350
Abstract
A common hallmark of neurodegenerative diseases is the accumulation of polypeptide aggregates in neurons. Despite the primary cause of these diseases being inherently genetic, their development can be delayed with proper preventive treatments. Long-chain polyunsaturated fatty acids (ω-3 LCPUFA) are promising bioactive nutrients [...] Read more.
A common hallmark of neurodegenerative diseases is the accumulation of polypeptide aggregates in neurons. Despite the primary cause of these diseases being inherently genetic, their development can be delayed with proper preventive treatments. Long-chain polyunsaturated fatty acids (ω-3 LCPUFA) are promising bioactive nutrients that are beneficial for brain health. In this study, the impact of an oil rich in a structured form of docosahexaenoic acid (DHA) triglyceride (TG) was assessed in a Caenorhabditis elegans model expressing long poly-glutamine (polyQ) chains, which mimics the symptomatology of polyQ-related neurodegenerative diseases such as Huntington’s disease (HD), among others. The lifespan, the motility, the number of polyQ aggregates, the oxidative stress resistance, and the cognitive performance associated with sensitive stimuli was measured in mutant nematodes with polyQ aggregates. Overall, DHA-TG at 0.5 µM improved the lifespan, the motility, the oxidative stress resistance, and the cognitive performance of the nematodes, emphasizing the protection against serotonergic synapse dysfunction. Furthermore, the treatment reduced the polyQ aggregates in the nematodes. The data described herein shed light on the connection between DHA and the cognitive performance in neurodegenerative diseases and demonstrated the potential of DHA-TG as nutritional co-adjuvant to prevent the development of polyQ-associated dysfunctions. Full article
(This article belongs to the Special Issue Effect of Diet on Human Neurocognitive Function)
Show Figures

Figure 1

13 pages, 1915 KiB  
Article
Erucin, a Natural Isothiocyanate, Prevents Polyglutamine-Induced Toxicity in Caenorhabditis elegans via aak-2/AMPK and daf-16/FOXO Signaling
by Martina Balducci, Julia Tortajada Pérez, Cristina Trujillo del Río, Mar Collado Pérez, Andrea del Valle Carranza, Ana Pilar Gomez Escribano, Rafael P. Vázquez-Manrique and Andrea Tarozzi
Int. J. Mol. Sci. 2024, 25(22), 12220; https://doi.org/10.3390/ijms252212220 - 14 Nov 2024
Cited by 3 | Viewed by 1506
Abstract
Several neurodegenerative diseases (NDDs), such as Huntington’s disease, six of the spinocerebellar ataxias, dentatorubral-pallidoluysian atrophy, and spinobulbar muscular atrophy, are caused by abnormally long polyglutamine (polyQ) tracts. Natural compounds capable of alleviating polyQ-induced toxicity are currently of great interest. In this work, we [...] Read more.
Several neurodegenerative diseases (NDDs), such as Huntington’s disease, six of the spinocerebellar ataxias, dentatorubral-pallidoluysian atrophy, and spinobulbar muscular atrophy, are caused by abnormally long polyglutamine (polyQ) tracts. Natural compounds capable of alleviating polyQ-induced toxicity are currently of great interest. In this work, we investigated the modulatory effect against polyQ neurotoxic aggregates exerted by erucin (ERN), an isothiocyanate naturally present in its precursor glucoerucin in rocket salad leaves and in its oxidized form, sulforaphane (SFN), in broccoli. Using C. elegans models expressing polyQ in different tissues, we demonstrated that ERN protects against polyQ-induced toxicity and that its action depends on the catalytic subunit of AMP-activated protein kinase (aak-2/AMPKα2) and, downstream in this pathway, on the daf-16/FOXO transcription factor, since nematodes deficient in aak-2/AMPKα2 and daf-16 did not respond to the treatment, respectively. Although triggered by a different source of neurotoxicity than polyQ diseases, i.e., by α-synuclein (α-syn) aggregates, Parkinson’s disease (PD) was also considered in our study. Our results showed that ERN reduces α-syn aggregates and slightly improves the motility of worms. Therefore, further preclinical studies in mouse models of protein aggregation are justified and could provide insights into testing whether ERN could be a potential neuroprotective compound in humans. Full article
Show Figures

Graphical abstract

23 pages, 665 KiB  
Article
Spline Estimator in Nonparametric Ordinal Logistic Regression Model for Predicting Heart Attack Risk
by Nur Chamidah, Budi Lestari, Hendri Susilo, Mochamad Yusuf Alsagaff, I Nyoman Budiantara and Dursun Aydin
Symmetry 2024, 16(11), 1440; https://doi.org/10.3390/sym16111440 - 30 Oct 2024
Cited by 4 | Viewed by 1739
Abstract
In Indonesia, one of the main causes of death for both young and elderly people is heart attacks, and the main cause of heart attacks is non-communicable diseases such as hypertension. Deaths due to heart attacks caused by non-communicable diseases, namely hypertension, rank [...] Read more.
In Indonesia, one of the main causes of death for both young and elderly people is heart attacks, and the main cause of heart attacks is non-communicable diseases such as hypertension. Deaths due to heart attacks caused by non-communicable diseases, namely hypertension, rank first in Indonesia. Therefore, predictions of the risk of having a heart attack caused by hypertension need serious attention. Further, for determining whether a patient is experiencing a heart attack, an effective method of prediction is required. One efficient approach is to use statistical models. This study discusses predicting risk of heart attack via modeling and classifying hypertension risk based on factors that influence it, namely, age, cholesterol levels, and triglyceride levels by using the spline estimator of the Nonparametric Ordinal Logistic Regression (NOLR) model. In this study, we assume an ordinal scale response variable with q categories to have an asymmetric distribution, namely, a multinomial distribution. The data used in this study are secondary data from medical records of cardiac poly patients at the Haji General Hospital in Surabaya, Indonesia. The results show that the proposed model approach has the greatest classification accuracy and sensitivity values compared to NOLR model approach using GAM, and the classical model approach, namely the Parametric Ordinal Logistic Regression (POLR) model. This means that the NOLR model approach is suitable for predicting hypertension and heart attack risks. Also, the NOLR model estimated using the LS-Spline estimator obtained is valid for predicting the risk of heart attack with accuracy value of 85% and sensitivity value of 100%. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

16 pages, 1992 KiB  
Article
Enhanced Age-Dependent Motor Impairment in Males of Drosophila melanogaster Modeling Spinocerebellar Ataxia Type 1 Is Linked to Dysregulation of a Matrix Metalloproteinase
by Emma M. Palmer, Caleb A. Snoddy, Peyton M. York, Sydney M. Davis, Madelyn F. Hunter and Natraj Krishnan
Biology 2024, 13(11), 854; https://doi.org/10.3390/biology13110854 - 23 Oct 2024
Viewed by 1354
Abstract
Over the past two decades, Drosophila melanogaster has proven to be successful in modeling the polyglutamine (polyQ) (caused by CAG repeats) family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. [...] Read more.
Over the past two decades, Drosophila melanogaster has proven to be successful in modeling the polyglutamine (polyQ) (caused by CAG repeats) family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. In this study, pan-neuronal expression of human Ataxin-1 with long polyQ repeat of 82 amino acids was driven using an elav-GAL4 driver line. This would essentially model the polyQ disease spinocerebellar ataxia type 1 (SCA1). Longevity and behavioral analysis of male flies expressing human Ataxin-1 revealed compromised lifespan and accelerated locomotor activity deficits both in diurnal activity and negative geotaxis response compared to control flies. Interestingly, this decline in motor response was coupled to an enhancement of matrix metalloproteinase 1 (dMMP1) expression together with declining expression of extracellular matrix (ECM) fibroblast growth factor (FGF) signaling by hedgehog (Hh) and branchless (bnl) and a significant decrease in expression of survival motor neuron gene (dsmn) in old (30 d) flies. Taken together, our results indicate a role for dysregulation of matrix metalloproteinase in polyQ disease with consequent impact on ECM signaling factors, as well as SMN at the neuromuscular junction causing overt physiological and behavioral deficits. Full article
(This article belongs to the Special Issue Animal Models for Disease Mechanisms)
Show Figures

Figure 1

14 pages, 2588 KiB  
Article
UBL3 Interacts with PolyQ-Expanded Huntingtin Fragments and Modifies Their Intracellular Sorting
by Soho Oyama, Hengsen Zhang, Rafia Ferdous, Yuna Tomochika, Bin Chen, Shuyun Jiang, Md. Shoriful Islam, Md. Mahmudul Hasan, Qing Zhai, A. S. M. Waliullah, Yashuang Ping, Jing Yan, Mst. Afsana Mimi, Chi Zhang, Shuhei Aramaki, Yusuke Takanashi, Tomoaki Kahyo, Yoshio Hashizume, Daita Kaneda and Mitsutoshi Setou
Neurol. Int. 2024, 16(6), 1175-1188; https://doi.org/10.3390/neurolint16060089 - 22 Oct 2024
Cited by 1 | Viewed by 1927
Abstract
Background/Objectives: UBL3 (Ubiquitin-like 3) is a protein that plays a crucial role in post-translational modifications, particularly in regulating protein transport within small extracellular vesicles. While previous research has predominantly focused on its interactions with α-synuclein, this study investigates UBL3’s role in Huntington’s disease [...] Read more.
Background/Objectives: UBL3 (Ubiquitin-like 3) is a protein that plays a crucial role in post-translational modifications, particularly in regulating protein transport within small extracellular vesicles. While previous research has predominantly focused on its interactions with α-synuclein, this study investigates UBL3’s role in Huntington’s disease (HD). HD is characterized by movement disorders and cognitive impairments, with its pathogenesis linked to toxic, polyglutamine (polyQ)-expanded mutant huntingtin fragments (mHTT). However, the mechanisms underlying the interaction between UBL3 and mHTT remain poorly understood. Methods: To elucidate this relationship, we performed hematoxylin and eosin (HE) staining and immunohistochemistry (IHC) on postmortem brain tissue from HD patients. Gaussia princeps-based split-luciferase complementation assay and co-immunoprecipitation were employed to confirm the interaction between UBL3 and mHTT. Additionally, we conducted a HiBiT lytic detection assay to assess the influence of UBL3 on the intracellular sorting of mHTT. Finally, immunocytochemical staining was utilized to validate the colocalization and distribution of these proteins. Results: Our findings revealed UBL3-positive inclusions in the cytoplasm and nuclei of neurons throughout the striatum of HD patients. We discovered that UBL3 colocalizes and interacts with mHTT and modulates its intracellular sorting. Conclusions: These results suggest that UBL3 may play a significant role in the interaction and sorting of mHTT, contributing to the understanding of its potential implications in the pathophysiology of Huntington’s disease. Full article
(This article belongs to the Special Issue New Insights into Genetic Neurological Diseases)
Show Figures

Figure 1

18 pages, 5727 KiB  
Article
Identification and Copy Number Variant Analysis of Enhancer Regions of Genes Causing Spinocerebellar Ataxia
by Fatemeh Ghorbani, Eddy N. de Boer, Michiel R. Fokkens, Jelkje de Boer-Bergsma, Corien C. Verschuuren-Bemelmans, Elles Wierenga, Hamidreza Kasaei, Daan Noordermeer, Dineke S. Verbeek, Helga Westers and Cleo C. van Diemen
Int. J. Mol. Sci. 2024, 25(20), 11205; https://doi.org/10.3390/ijms252011205 - 18 Oct 2024
Cited by 1 | Viewed by 1324
Abstract
Currently, routine diagnostics for spinocerebellar ataxia (SCA) look for polyQ repeat expansions and conventional variations affecting the proteins encoded by known SCA genes. However, ~40% of the patients still remain without a genetic diagnosis after routine tests. Increasing evidence suggests that variations in [...] Read more.
Currently, routine diagnostics for spinocerebellar ataxia (SCA) look for polyQ repeat expansions and conventional variations affecting the proteins encoded by known SCA genes. However, ~40% of the patients still remain without a genetic diagnosis after routine tests. Increasing evidence suggests that variations in the enhancer regions of genes involved in neurodegenerative disorders can also cause disease. Since the enhancers of SCA genes are not yet known, it remains to be determined whether variations in these regions are a cause of SCA. In this pilot project, we aimed to identify the enhancers of the SCA genes ATXN1, ATXN3, TBP and ITPR1 in the human cerebellum using 4C-seq, publicly available datasets, reciprocal 4C-seq, and luciferase assays. We then screened these enhancers for copy number variants (CNVs) in a cohort of genetically undiagnosed SCA patients. We identified two active enhancers for each of the four SCA genes. CNV analysis did not reveal any CNVs in the enhancers of the four SCA genes in the genetically undiagnosed SCA patients. However, in one patient, we noted a CNV deletion with an unknown clinical significance near one of the ITPR1 enhancers. These results not only reveal elements involved in SCA gene regulation but can also lead to the discovery of novel SCA-causing genetic variants. As enhancer variations are being increasingly recognized as a cause of brain disorders, screening the enhancers of ATXN1, ATXN3, TBP and ITPR1 for variations other than CNVs and identifying and screening enhancers of other SCA genes might elucidate the genetic cause in undiagnosed patients. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop