Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = PCB stator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5415 KB  
Article
Magnetic Equivalent Circuit-Based Performance Evaluation of Modular PCB AFPM Motor for Electric Water Pumps
by Do-Hyeon Choi, Won-Ho Kim and Hyungkwan Jang
Actuators 2026, 15(2), 87; https://doi.org/10.3390/act15020087 (registering DOI) - 1 Feb 2026
Abstract
Electric Water Pumps (EWPs) are being adopted more widely to improve thermal management in internal combustion engines and electrified powertrain systems. In this context, the drive motor must deliver high efficiency and reliability despite a strict volume constraint. This paper addresses a key [...] Read more.
Electric Water Pumps (EWPs) are being adopted more widely to improve thermal management in internal combustion engines and electrified powertrain systems. In this context, the drive motor must deliver high efficiency and reliability despite a strict volume constraint. This paper addresses a key drawback of coreless printed circuit board (PCB) stator axial-flux permanent-magnet machines for EWP use: the PCB traces are directly exposed to the magnet flux, which increases AC loss, while the required phase resistance also leads to non-negligible DC copper loss. To mitigate both loss components within the same conductor design space, a pyramid trace concept is introduced. A magnetic equivalent circuit (MEC) based model is first used to estimate the baseline performance as the number of PCB stator modules changes, and the resulting scalability is examined in terms of module commonality. The final design then applies the pyramid trace layout with a layer-dependent trace width that is narrower on the layers closer to the magnets and wider on the layers farther away—the trade-off between AC loss and DC loss is optimized using 3D finite element analysis. Torque predictions from the simplified MEC model are cross-checked against 3D finite element analysis (FEA), and finally, a prototype is built to validate the analysis with experimental measurements; for the final selected model, the torque prediction error is 2.37% compared with the validation result. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

16 pages, 5272 KB  
Article
Performance Comparison of Coreless PCB AFPM Topologies for Duct Fan
by Seung-Hoon Ko, Min-Ki Hong, Na-Rim Jo, Ye-Seo Lee and Won-Ho Kim
Energies 2025, 18(17), 4600; https://doi.org/10.3390/en18174600 - 29 Aug 2025
Viewed by 1072
Abstract
Duct fan motors must provide high torque within limited space to maintain airflow while requiring low vibration characteristics to minimize fluid resistance caused by fan oscillation. Axial Flux Permanent Magnet Motor (AFPM) offers higher torque performance than Radial Flux Permanent Magnet Motor (RFPM) [...] Read more.
Duct fan motors must provide high torque within limited space to maintain airflow while requiring low vibration characteristics to minimize fluid resistance caused by fan oscillation. Axial Flux Permanent Magnet Motor (AFPM) offers higher torque performance than Radial Flux Permanent Magnet Motor (RFPM) due to their large radial and short axial dimensions. In particular, the coreless AFPM structure enables superior low-vibration performance. Conventional AFPM typically employs a core-type stator, which presents manufacturing difficulties. In core-type AFPM, applying a multi-stator configuration linearly increases winding takt time in proportion to the number of stators. Conversely, a Printed Circuit Board (PCB) stator AFPM significantly reduces stator production time, making it favorable for implementing multi-stator topologies. The use of multi-stator structures enables various topological configurations depending on (1) stator placement, (2) magnetization pattern of permanent magnets, and (3) rotor arrangement—each offering specific advantages. This study evaluates and analyzes the performance of different topologies based on efficient arrangements of magnets and stators, aiming to identify the optimal structure for duct fan applications. The validity of the proposed approach and design was verified through three-dimensional finite element analysis (FEA). Full article
Show Figures

Figure 1

18 pages, 6348 KB  
Article
A Study on Reducing Loss in PCB Motor Stator Using Multi-Via Structure
by Su-Bin Jeon, Do-Hyeon Choi, Hyung-Sub Han, Yun-Ha Song and Won-Ho Kim
Actuators 2025, 14(9), 424; https://doi.org/10.3390/act14090424 - 29 Aug 2025
Viewed by 1543
Abstract
This study proposes a multi-via structure as a loss-reduction design technique to mitigate current crowding in a slotless axial flux permanent magnet motor (AFPM) equipped with printed circuit board (PCB) stators. The PCB stator enables high current density operation through parallel copper-foil stacking [...] Read more.
This study proposes a multi-via structure as a loss-reduction design technique to mitigate current crowding in a slotless axial flux permanent magnet motor (AFPM) equipped with printed circuit board (PCB) stators. The PCB stator enables high current density operation through parallel copper-foil stacking and supports an ultra-compact structural configuration. However, current concentration in the via regions can increase copper loss and phase resistance. In this work, the via position and diameter were defined as design variables to perform a sensitivity analysis of current distribution and phase resistance variation. The effects of current density dispersion and the potential for copper loss reduction were evaluated using three-dimensional finite-element analysis (FEA). The results confirm that adopting a multi-via structure improves current path uniformity and reduces electrical losses, thereby enhancing overall efficiency. Furthermore, the analysis shows that excessive via enlargement or overuse does not necessarily yield optimal results and, in certain cases, may lead to localized current peaks. These findings demonstrate that the multi-via structure is an effective and appropriate design strategy for PCB stators and highlight the importance of optimized via placement tailored to each stator configuration. Full article
(This article belongs to the Special Issue Recent Developments in Precision Actuation Technologies)
Show Figures

Figure 1

20 pages, 15156 KB  
Article
Design for Loss Reduction in a Compact AFPM Electric Water Pump with a PCB Motor
by Do-Hyeon Choi, Hyung-Sub Han, Min-Ki Hong, Dong-Hoon Jung and Won-Ho Kim
Energies 2025, 18(10), 2538; https://doi.org/10.3390/en18102538 - 14 May 2025
Cited by 5 | Viewed by 1487
Abstract
A PCB stator axial flux permanent magnet (AFPM) motor is presented that overcomes the manufacturing challenges associated with the complex geometry of conventional stators by employing a PCB substrate. Traditionally, AFPM motors are produced by winding coils around the stator teeth, a process [...] Read more.
A PCB stator axial flux permanent magnet (AFPM) motor is presented that overcomes the manufacturing challenges associated with the complex geometry of conventional stators by employing a PCB substrate. Traditionally, AFPM motors are produced by winding coils around the stator teeth, a process that requires specialized winding machinery and is both labor intensive and time consuming, ultimately incurring considerable manufacturing costs and delays. In contrast, PCB substrates offer significant advantages in manufacturability and mass production, effectively resolving these issues. Furthermore, the primary material used in PCB substrates, FR-4, exhibits a permeability similar to that of air, resulting in negligible electromagnetic cogging torque. Cogging torque arises from the attraction between permanent magnets and stator teeth, creating forces that interfere with motor rotation and generate unwanted vibration, noise, and potential mechanical collisions between the rotor and stator. In the PCB stator design, the conventional PCB circuit pattern is replaced by the motor’s coil configuration, and the absence of stator teeth eliminates these interference issues. Consequently, a slotless motor configuration with minimal vibration and noise is achieved. The PCB AFPM motor has been applied to a vehicle-mounted electric water pump (EWP), where mass production and space efficiency are critical. In an EWP, which integrates the impeller with the motor, it is essential that vibrations are minimized since excessive vibration could compromise impeller operation and, due to fluid resistance, require high power input. Moreover, the AFPM configuration facilitates higher torque generation compared to a conventional radial flux permanent magnet synchronous motor (RFPM). In a slotless AFPM motor, the absence of stator teeth prevents core flux saturation, thereby further enhancing torque performance. AC losses occur in the conductors as a result of the magnetic flux produced by the permanent magnets, and similar losses arise within the PCB circuits. Therefore, an optimized PCB circuit design is essential to reduce these losses. The Constant Trace Conductor (CTC) PCB circuit design process is proposed as a viable solution to mitigate AC losses. A 3D finite element analysis (3D FEA) model was developed, analyzed, fabricated, and validated to verify the proposed solution. Full article
Show Figures

Figure 1

16 pages, 2000 KB  
Proceeding Paper
The Utilization of Printed Circuit Boards (PCBs) in Axial Flux Machines: A Systematic Review
by Isiaka Shuaibu, Eric Ho Tatt Wei, Ramani Kannan and Yau Alhaji Samaila
Eng. Proc. 2025, 87(1), 13; https://doi.org/10.3390/engproc2025087013 - 6 Mar 2025
Cited by 2 | Viewed by 3999
Abstract
The rapid advancement of technology has increased our reliance on axial flux permanent magnet machines (AFPMMs), making Printed Circuit Boards (PCBs) essential for modern, lightweight designs. This study reviews PCB roles in AFPMMs for low- and high-power applications by examining research from 2019 [...] Read more.
The rapid advancement of technology has increased our reliance on axial flux permanent magnet machines (AFPMMs), making Printed Circuit Boards (PCBs) essential for modern, lightweight designs. This study reviews PCB roles in AFPMMs for low- and high-power applications by examining research from 2019 to 2024. Using the PRISMA methodology, 38 articles from IEEE Xplore and Web of Science were analyzed. This review focuses on advancements in PCB manufacturing, defect mitigation, winding topologies, software tools, and optimization methods. A structured Boolean search strategy (“Printed Circuit Board” OR “PCB” AND “axial flux permanent magnet machine” OR “AFPM”) guided the literature retrieval process. Articles were meticulously screened using the Rayyan software for titles, abstracts, and content, with duplicate removal performed via the Mendeley software V2.120.0. Findings show significant progress in lightweight AFPMMs with PCBs, improving power quality and performance. Research activity over the 6 years showed inconsistent growth, with concentrated trapezoidal winding emerging as the dominant configuration, followed by distributed winding designs. These configurations were particularly applied in single stator double rotor (SSDR) coreless AFPM machines, characterized by minimal defects, minimal losses, and optimized single-layer winding designs utilizing tools such as ANSYS and COMSOL. Growing interest in double stator single rotor (DSSR) and multi-disk configurations highlights opportunities for innovative designs and advanced optimization techniques. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

27 pages, 24406 KB  
Article
Low-Cost Microcontroller-Based System for Condition Monitoring of Permanent-Magnet Synchronous Motor Stator Windings
by Przemyslaw Pietrzak, Marcin Wolkiewicz and Jan Kotarski
Electronics 2024, 13(15), 2975; https://doi.org/10.3390/electronics13152975 - 28 Jul 2024
Cited by 1 | Viewed by 1950
Abstract
Permanent-magnet synchronous motors (PMSMs) have played a key role in recent years in both industrial and commercial applications. Despite their many significant advantages, such as high efficiency, very good dynamics, and high power density, these types of motors are prone to various types [...] Read more.
Permanent-magnet synchronous motors (PMSMs) have played a key role in recent years in both industrial and commercial applications. Despite their many significant advantages, such as high efficiency, very good dynamics, and high power density, these types of motors are prone to various types of faults. This article proposes a low-cost microcontroller-based system for PMSM stator winding condition monitoring and fault diagnosis. It meets the demand created by the use of more and more low-budget solutions in industrial and commercial applications. A printed circuit board (PCB) has been developed to measure PMSM stator phase currents, which are used as diagnostic signals. The key components of this PCB are LEM’s LESR 6-NP current transducers. The acquisition and processing of diagnostic signals using a low-cost embedded system (NUCLEO-H7A3ZI-Q) with an ARM Cortex-M core is described in detail. A machine learning-driven KNN-based fault diagnostic algorithm is implemented to detect and classify incipient PMSM stator winding faults (interturn short-circuits). The effects of the severity of the fault and the motor operating conditions on the symptom extraction process are also investigated. The results of experimental tests conducted on a 2.5 kW PMSM confirmed the effectiveness of the developed system. Full article
Show Figures

Figure 1

21 pages, 15541 KB  
Article
Force and Torque Model of Magnetically Levitated System with 2D Halbach Array and Printed Circuit Board Coils
by Menglong Zou, Mingxing Song, Shun Zhou, Xianze Xu and Fengqiu Xu
Sensors 2023, 23(21), 8735; https://doi.org/10.3390/s23218735 - 26 Oct 2023
Cited by 5 | Viewed by 3661
Abstract
Precision machining fields often require worktables with different stroke sizes. To address the need for scalability and facilitate manufacturing, this study proposes a novel infinite expansion magnetically levitated planar motor (MLPM) based on PCB stator coils. Different from existing magnetic levitation systems that [...] Read more.
Precision machining fields often require worktables with different stroke sizes. To address the need for scalability and facilitate manufacturing, this study proposes a novel infinite expansion magnetically levitated planar motor (MLPM) based on PCB stator coils. Different from existing magnetic levitation systems that use PCB coils, the design presented in this paper utilizes smaller coil units, with each coil being independent of one another. The coils are structured in a spiral pattern on a 16-layer PCB, comprising 15 layers of coils, while the last layer is dedicated to wiring and other circuits. Magnetic field modeling is conducted for both the stator coil and the 2D Halbach array structure employed in the system. A simple table lookup method is employed to accurately account for the prevalent end effects observed during system motion. Additionally, the decoupling effect of magnetic force and torque is evaluated by solving for the current vector at different points along a specific trajectory. To verify the accuracy of the proposed system’s modeling, a prototype is developed and tested. Experimental results demonstrate that compared to traditional harmonic model methods, the proposed approach improves the calculation accuracy of magnetic force by 50.31% and torque by 70.65%. This study presents a new MLPM system with vast potential applications in precision manufacturing and robotics. The innovative design and improved performance characteristics make it a promising technology for enhancing the capabilities of worktables in precision machining fields. Full article
(This article belongs to the Topic Modern Technologies and Manufacturing Systems, 2nd Volume)
Show Figures

Figure 1

14 pages, 4773 KB  
Article
Multi-Parameter Optimization of Stator Coreless Disc Motor Based on Orthogonal Response Surface Method
by Huiqin Sun, Ying Li, Lucheng Zhang, Zezhao Xue, Weiguang Hu, Guoshuai Li and Yingjun Guo
Electronics 2023, 12(14), 3020; https://doi.org/10.3390/electronics12143020 - 10 Jul 2023
Cited by 3 | Viewed by 2024
Abstract
In response to the structural optimization problem of PCB stator coreless disc motors, the orthogonal response surface method was used to optimize the motor structure, preliminarily determine the basic parameters of the motor, and conduct orthogonal experiments on the motor parameters based on [...] Read more.
In response to the structural optimization problem of PCB stator coreless disc motors, the orthogonal response surface method was used to optimize the motor structure, preliminarily determine the basic parameters of the motor, and conduct orthogonal experiments on the motor parameters based on the optimization design objectives. The optimization factors were the quantity of the magnetic pole of the motor rotor p, the ratio of the main/auxiliary pole sizes Rnd, the thickness Tm of the permanent magnet, and the air gap length δ. The motor torque Td, the amplitude of the magnetic density of the air gap Bδ, and the waveform distortion rate THD were used as optimization objectives. The motor parameters that cause the motor torque to reach a maximum cause the air gap magnetic density to reach a maximum and the waveform distortion rate to reach a minimum. Due to the use of PCB plates instead of motor stator cores in the PCB coreless disc motors, the service life of the PCB board during motor operation will be reduced with the temperature increase generated by the stator winding. To solve this problem, a response surface analysis of the motor was carried out to reduce the increase in the temperature of the stator windings during the operation of the motor. The PCB board and stator winding are the main factors affecting the motor’s temperature increase. Taking the thickness of the PCB board, the hole diameter on the board, and the uneven width of the stator winding as optimization factors, the motor parameters with the lowest increase in the temperature of the motor winding were obtained. A simulation analysis was conducted using Ansys/Maxwell software, and the results prove the feasibility of the optimization. Full article
Show Figures

Figure 1

15 pages, 6317 KB  
Article
Winding Design and Analysis for a Disc-Type Permanent-Magnet Synchronous Motor with a PCB Stator
by Xiaoyuan Wang, Huaidong Lu and Xiang Li
Energies 2018, 11(12), 3383; https://doi.org/10.3390/en11123383 - 3 Dec 2018
Cited by 18 | Viewed by 14903
Abstract
The stator structure of a disc-type permanent-magnet synchronous motor is a printed circuit board (PCB). The design of stator windings has a direct influence on motor performance and the utilization rate of the stator. However, in some respects, PCB processing technology limits the [...] Read more.
The stator structure of a disc-type permanent-magnet synchronous motor is a printed circuit board (PCB). The design of stator windings has a direct influence on motor performance and the utilization rate of the stator. However, in some respects, PCB processing technology limits the development of the disc-type electric motor with a PCB stator. For example, the wiring of the stator winding and the connections of the ends are single. In this paper, an improved winding was designed to improve the output power. The analytic expressions for the back electromotive force (EMF) and other parameters such as power, winding resistance, and eddy loss are established, respectively. According to finite-element theory, the characteristics of the improved winding and distributed winding under no load and load were simulated and analyzed. It is concluded that the improved winding not only improves no-load back EMF, along with output power and efficiency under load, but also the utilization rate of the stator was greatly improved. Finally, a prototype was made to verify the design that has a certain reference value for the design of a disc-type permanent-magnet motor with a PCB stator. Full article
Show Figures

Figure 1

21 pages, 4009 KB  
Article
Wind Micro-Turbine Networks for Urban Areas: Optimal Design and Power Scalability of Permanent Magnet Generators
by Marco Palmieri, Salvatore Bozzella, Giuseppe Leonardo Cascella, Marco Bronzini, Marco Torresi and Francesco Cupertino
Energies 2018, 11(10), 2759; https://doi.org/10.3390/en11102759 - 15 Oct 2018
Cited by 15 | Viewed by 6566
Abstract
This work is focused on the design optimization of electrical machines that are used in small-scale direct-drive aerogenerators. A ducted wind turbine, equipped with a diffuser, is considered due to its enhanced power capability with respect to bare turbines. An annular type Permanent [...] Read more.
This work is focused on the design optimization of electrical machines that are used in small-scale direct-drive aerogenerators. A ducted wind turbine, equipped with a diffuser, is considered due to its enhanced power capability with respect to bare turbines. An annular type Permanent Magnet brushless generator is integrated in the turbine structure: the stator coils are placed in the internal part of the diffuser, whereas the permanent magnets are on an external ring connected to the turbine blade tips. Moreover, as regards the stator windings, the Printed Circuit Board (PCB) technology is investigated in order to exploit its advantages with respect to conventional wire coils, such as the increased current density capacity, the reduction of costs, and the enhanced precision and repeatability of the PCBs. An original design procedure is presented together with some scalability rules. An automated tool has been developed in order to aid the electrical machine designer in the first design stages: the tool performs multi-objective optimizations (using the Matlab Genetic Algorithm Toolbox), coupled to fast Finite Element analysis (through the open-source software FEMM) for the evaluation of the electromagnetic torque and field distribution. The proposed procedure is applied to the design of an annular PM generator directly coupled to a small-scale turbine for an urban application. Full article
Show Figures

Figure 1

Back to TopTop