Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,700)

Search Parameters:
Keywords = P38MAPK

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 853 KB  
Article
Dysregulated MicroRNAs in Parkinson’s Disease: Pathogenic Mechanisms and Biomarker Potential
by Yasemin Ünal, Dilek Akbaş, Çilem Özdemir and Tuba Edgünlü
Int. J. Mol. Sci. 2026, 27(2), 930; https://doi.org/10.3390/ijms27020930 (registering DOI) - 17 Jan 2026
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by dopaminergic neuronal loss and abnormal α-synuclein aggregation. Circulating microRNAs (miRNAs) have emerged as promising biomarkers and potential modulators of PD-related molecular pathways. In this study, we investigated the expression levels of four candidate [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by dopaminergic neuronal loss and abnormal α-synuclein aggregation. Circulating microRNAs (miRNAs) have emerged as promising biomarkers and potential modulators of PD-related molecular pathways. In this study, we investigated the expression levels of four candidate miRNAs—miR-15a-5p, miR-16-5p, miR-139-5p, and miR-34a-3p—in patients with PD compared with healthy controls. A total of 47 PD patients and 45 age- and sex-matched controls were enrolled. Plasma miRNA levels were quantified using standardized RNA extraction, cDNA synthesis, and qPCR protocols. We observed marked upregulation of miR-15a-5p and robust downregulation of both miR-139-5p and miR-34a-3p in PD patients, whereas miR-16-5p showed no significant difference between groups. Target gene prediction and functional enrichment analysis identified 432 unique genes, with enrichment in biological processes related to protein ubiquitination and catabolic pathways, and signaling cascades such as mTOR, PI3K-Akt, MAPK, and Hippo pathways, all of which are implicated in neurodegeneration. Elevated miR-15a-5p may contribute to pro-apoptotic mechanisms, while reduced miR-139-5p and miR-34a-3p expression may reflect impaired mitochondrial function, diminished neuroprotection, or compensatory regulatory responses. Together, these dysregulated circulating miRNAs provide novel insight into PD pathophysiology and highlight their potential as accessible, non-invasive biomarkers. Further longitudinal studies in larger and more diverse cohorts are warranted to validate their diagnostic and prognostic value and to explore their utility as therapeutic targets. Full article
Show Figures

Figure 1

20 pages, 4403 KB  
Article
Fullerenol Eye Drops Mitigate UVB-Induced Cataract Progression by Inhibiting Oxidative Stress and Cellular Senescence
by Lele Zhang, Shuying Chen, Zihao Yu, Yuting Su, Jingyu Zhao, Lanlan Hu, Jinglong Tang and Mingliang Zhang
Antioxidants 2026, 15(1), 118; https://doi.org/10.3390/antiox15010118 - 16 Jan 2026
Abstract
Cataracts remain the leading cause of blindness worldwide, and surgery is currently the only effective clinical treatment, as no pharmacological therapy has yet been validated. Here, we explore Fullerenol, a hydroxylated fullerene derivative formulated as eye drops, as a potential nanomedicine for delaying [...] Read more.
Cataracts remain the leading cause of blindness worldwide, and surgery is currently the only effective clinical treatment, as no pharmacological therapy has yet been validated. Here, we explore Fullerenol, a hydroxylated fullerene derivative formulated as eye drops, as a potential nanomedicine for delaying cataract onset and progression. In UVB-induced mouse cataract models, topical Fullerenol preserved the lens transparency and histological structure. In human lens epithelial cells, Fullerenol reduced the oxidative stress, restored the mitochondrial function, alleviated the DNA damage, and suppressed the cellular senescence. RNA sequencing and pathway enrichment analyses further indicated that Fullerenol modulated the oxidative stress- and senescence-associated signaling pathways, including MAPK and TGF-β cascades, while downregulating the p53–CDKN1A (p21) axis. These findings provide new evidence that Fullerenol can mitigate photo-oxidative damage and age-related cellular dysfunction, highlighting its promise as a non-invasive and clinically translatable nanomedicine strategy for cataract management. Full article
(This article belongs to the Special Issue Antioxidants and Retinal Diseases—2nd Edition)
21 pages, 15847 KB  
Article
Exploring the Shared Diagnostic Biomarkers and Molecular Mechanisms Related to Mitochondrial Dysfunction in Inflammatory Bowel Disease and Rheumatoid Arthritis
by Lijiao Cui, Shicai Ye, Zhiwei Gu, Guixia Zhang, Tingen Chen, Yu Zhou and Caiyuan Yu
Curr. Issues Mol. Biol. 2026, 48(1), 89; https://doi.org/10.3390/cimb48010089 - 16 Jan 2026
Abstract
Inflammatory bowel disease (IBD) and rheumatoid arthritis (RA) are chronic inflammatory diseases that share immune dysregulation and mitochondrial dysfunction. Understanding the molecular mechanisms linking these diseases to mitochondrial dysfunction is crucial for developing novel diagnostic and therapeutic strategies. Datasets related to IBD and [...] Read more.
Inflammatory bowel disease (IBD) and rheumatoid arthritis (RA) are chronic inflammatory diseases that share immune dysregulation and mitochondrial dysfunction. Understanding the molecular mechanisms linking these diseases to mitochondrial dysfunction is crucial for developing novel diagnostic and therapeutic strategies. Datasets related to IBD and RA were obtained from the Gene Expression Omnibus database. Differentially expressed mitochondrial dysfunction-related genes (MDRGs) were identified using differential expression analysis. Weighted gene co-expression network analysis was performed to identify crosstalk genes (CGs). Logistic regression and support vector machine (SVM) models were constructed using least absolute shrinkage and selection operator regression to identify hub genes. Additionally, the differential expression and diagnostic value of the hub genes were verified using quantitative reverse transcriptase–polymerase chain reaction and validation sets. Finally, immune infiltration analysis was conducted to assess the role of immune cells in IBD and RA. A total of 87 CGs associated with mitochondrial dysfunction were identified between IBD and RA, among which PDIA4 and DUSP6 were identified as hub genes. Twenty proteins, including ERO1A, MAPK7, and P4HB, were identified as key proteins that interacted with PDIA4 and DUSP6. The area under the curve (AUC) of the ROC curves for IBD and RA based on the DUSP6 and PDIA4 diagnostic models were 0.664 and 0.856, respectively. The qRT-PCR results indicated that PDIA4 and DUSP6 were overexpressed in IBD and RA. Seven immune cell types, including activated B cells, activated dendritic cells, and eosinophils showed significant differences in the IBD and RA groups. Our findings highlight the close association between IBD, RA, and mitochondrial dysfunction. PDIA4 and DUSP6 may serve as potential biomarkers of mitochondrial dysfunction in patients with IBD and RA. Full article
Show Figures

Figure 1

14 pages, 3478 KB  
Article
Recombinant Macrophage Migration Inhibitory Factor Derived from Trichinella spiralis Suppresses Obesity by Reducing Body Fat and Inflammation
by Seo Yeong Choi, Mi-Kyung Park, Yu Jin Jeong, Dong Gyu Han, Chaeeun Jin, Chang Woo Han, Se Bok Jang, Shin Ae Kang and Hak Sun Yu
Int. J. Mol. Sci. 2026, 27(2), 887; https://doi.org/10.3390/ijms27020887 - 15 Jan 2026
Viewed by 23
Abstract
Obesity, an escalating global health crisis, is characterized by adipose tissue hypertrophy and chronic low-grade inflammation. Although anti-obesity drugs can induce weight loss, their use is limited by adverse effects, underscoring the need for safer therapeutic strategies. In this study, we generated a [...] Read more.
Obesity, an escalating global health crisis, is characterized by adipose tissue hypertrophy and chronic low-grade inflammation. Although anti-obesity drugs can induce weight loss, their use is limited by adverse effects, underscoring the need for safer therapeutic strategies. In this study, we generated a recombinant form of Trichinella spiralis-derived macrophage migration inhibitory factor (rTs-MIF) and investigated its anti-inflammatory and anti-obesity effects via immunometabolic regulation. Male C57BL/6 mice fed a 45% high-fat diet were orally administered rTs-MIF, and its effects were evaluated by measuring fat mass, glucose metabolism, serum cytokines, liver histology, and adipose tissue parameters. In 3T3-L1 cells, we examined the effects of rTs-MIF on adipocyte differentiation, obesity-related gene expression, and intracellular signaling pathways. Oral rTs-MIF suppressed body weight gain, reduced fat mass, improved glucose levels, and decreased the food efficiency ratio. It also lowered pro-inflammatory cytokines and increased markers associated with M2 macrophages. In 3T3-L1 cells, rTs-MIF inhibited adipocyte differentiation and reduced the expression of lipogenic transcription factors and mouse Mif while modulating AKT and p44/42 MAPK signaling. These findings identify rTs-MIF as a potential bioactive candidate that ameliorates obesity by regulating the immune–metabolic axis. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Obesity and Metabolic Diseases)
Show Figures

Figure 1

28 pages, 1084 KB  
Review
Nutritional Modulation of the Gut–Kidney Axis
by Razvan George Bogdan, Felicia Gabriela Gligor, Paula Anderco, Livia Mirela Popa, Adriana Popescu, Vlad Adam Bloanca, Elisa Leonte, Mihai Iliescu Glaja, Zorin Petrisor Crainiceanu and Cristian Ichim
Nutrients 2026, 18(2), 263; https://doi.org/10.3390/nu18020263 - 14 Jan 2026
Viewed by 83
Abstract
Background: Chronic kidney disease (CKD) represents a state of persistent, sterile low-grade inflammation in which sustained innate immune activation accelerates renal decline and cardiovascular complications. Diet-induced gut dysbiosis and intestinal barrier dysfunction lower mucosal immune tolerance, promote metabolic endotoxemia, and position the gut [...] Read more.
Background: Chronic kidney disease (CKD) represents a state of persistent, sterile low-grade inflammation in which sustained innate immune activation accelerates renal decline and cardiovascular complications. Diet-induced gut dysbiosis and intestinal barrier dysfunction lower mucosal immune tolerance, promote metabolic endotoxemia, and position the gut as an upstream modulator of systemic inflammatory signaling along the gut–kidney axis. Scope: Most studies address microbiota-derived metabolites, food-derived bioactive peptides, or omega-3 fatty acids separately. This review integrates evidence across these domains and examines their convergent actions on epithelial barrier integrity, immune polarization, oxidative-inflammatory stress, and inflammasome-dependent pathways relevant to CKD progression. Key mechanisms: CKD-associated dysbiosis is characterized by reduced short-chain fatty acid (SCFA) production and increased generation and accumulation of uremic toxins and co-metabolites, including indoxyl sulfate, p-cresyl sulfate, trimethylamine N-oxide, and altered bile acids. Reduced SCFA availability weakens tight junction-dependent barrier function and regulatory immune programs, favoring Th17-skewed inflammation and endotoxin translocation. Bioactive peptides modulate inflammatory mediator networks and barrier-related pathways through effects on NF-κB/MAPK signaling and redox balance, while omega-3 fatty acids and specialized pro-resolving mediators support resolution-phase immune responses. Across these modalities, shared control points include barrier integrity, metabolic endotoxemia, oxidative stress, and NLRP3 inflammasome activation. Conclusions: Although evidence remains heterogeneous and largely preclinical, combined nutritional modulation targeting these convergent pathways may offer greater immunomodulatory benefit than isolated interventions. Future multi-omics-guided, factorial trials are required to define responder phenotypes and translate precision immunonutrition strategies into clinical CKD care. Full article
Show Figures

Figure 1

12 pages, 2660 KB  
Article
Ziziphus jujuba “Huizao” Polysaccharides Exert Immunomodulatory Activity In Vitro and In Vivo by Modulating the TLR4/MAPK/NF-κB Signalling Pathway
by Bin Li, Ting Yang, Jingteng Wang, Xin Shang, Ruxianguli Maimaitiyiming, Jun Xing, Bin Wu and Yinghua Fu
Foods 2026, 15(2), 292; https://doi.org/10.3390/foods15020292 - 13 Jan 2026
Viewed by 192
Abstract
Ziziphus jujuba is an important source of polysaccharides in food supply, and studies have demonstrated that polysaccharides serve as the principal active constituents responsible for immunomodulatory effects. The results indicated that “Huizao” polysaccharides (HP2-1) increased the viability and phagocytic activity of [...] Read more.
Ziziphus jujuba is an important source of polysaccharides in food supply, and studies have demonstrated that polysaccharides serve as the principal active constituents responsible for immunomodulatory effects. The results indicated that “Huizao” polysaccharides (HP2-1) increased the viability and phagocytic activity of RAW264.7 cells and triggered immune responses by promoting cytokines TNF-α, IL-6, and IL-1β secretion, as well as NO and ROS production. In addition, HP2-1 also stimulated cytokine production, elevated immunoglobulin levels, and alleviated oxidative stress via increasing antioxidant enzyme activities and reducing MDA production in immunosuppressed mice. Furthermore, HP2-1 potentiated immune responses both in vitro and in vivo by modulating the TLR4/MAPK/NF-κB pathway due to upregulating TLR4 expression, leading to phosphorylation of ERK, JNK, and p38 MAPKs, thereby activating NF-κB and subsequent cytokine secretion. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

32 pages, 10921 KB  
Article
Prognostic Impact of RTK–RAS Alterations in FOLFOX-Treated Early-Onset Colorectal Cancer Revealed by Artificial Intelligence-Driven Precision Oncology
by Fernando C. Diaz, Brigette Waldrup, Francisco G. Carranza, Sophia Manjarrez and Enrique Velazquez-Villarreal
Cancers 2026, 18(2), 239; https://doi.org/10.3390/cancers18020239 - 13 Jan 2026
Viewed by 173
Abstract
Background/Objectives: Early-onset colorectal cancer (EOCRC; diagnosed before age 50) is rising at an accelerated rate, with a disproportionate impact on underserved populations. While alterations in the receptor tyrosine kinase–RAS (RTK–RAS) signaling pathway play a fundamental role in colorectal cancer (CRC) biology, their prognostic [...] Read more.
Background/Objectives: Early-onset colorectal cancer (EOCRC; diagnosed before age 50) is rising at an accelerated rate, with a disproportionate impact on underserved populations. While alterations in the receptor tyrosine kinase–RAS (RTK–RAS) signaling pathway play a fundamental role in colorectal cancer (CRC) biology, their prognostic significance in the setting of FOLFOX chemotherapy—particularly across different age groups and ancestral backgrounds—remains insufficiently characterized. We sought to characterize age-, ancestry-, and treatment-specific associations between RTK–RAS alterations and clinical outcomes using an AI-enabled precision oncology framework. Methods: We analyzed 2515 CRC cases, including 266 Hispanic/Latino (H/L) and 2249 non-Hispanic White (NHW) patients, stratified by age at onset, ancestry, and FOLFOX treatment status. Mutation frequencies were assessed using Fisher’s exact and chi-square tests, while overall survival was analyzed with Kaplan–Meier methods. The AI-HOPE and AI-HOPE–RTK–RAS conversational artificial intelligence platforms were used to integrate clinical, genomic, and treatment data via multi-parameter, natural language–based queries. Results: In early-onset Hispanic/Latino patients, ERBB2 and NF1 mutations occurred at significantly lower frequencies in FOLFOX-treated cases compared with untreated cases (p = 0.01 for both). In late-onset H/L patients, NTRK2 mutations were depleted in FOLFOX-treated tumors (p = 0.04). In untreated early-onset H/L patients, MAPK3 and NF1 mutations were enriched relative to NHW counterparts. Among early-onset NHW patients, IGF1R and ERRFI1 mutations were less frequent with FOLFOX exposure, while multiple RTK–RAS genes were reduced in FOLFOX-treated late-onset NHW patients. Survival analyses revealed worse overall survival in FOLFOX-untreated early-onset NHW patients with RTK–RAS alterations (p = 0.029), but improved survival in FOLFOX-treated late-onset NHW patients (p = 0.048). Conclusions: RTK–RAS pathway alterations demonstrate strong age-, ancestry-, and treatment-specific prognostic effects and may serve as precision biomarkers of differential chemotherapy response. AI-enabled analytics substantially accelerated integrative biomarker discovery, supporting their utility for advancing precision oncology in EOCRC. Full article
(This article belongs to the Section Cancer Epidemiology and Prevention)
Show Figures

Figure 1

23 pages, 1377 KB  
Review
Immunomodulatory Effects of Lidocaine: Mechanisms of Actions and Therapeutic Applications
by Jianwei Wu, Quanfu Chen, Zhiling He, Bin Yang, Zhenhua Dai and Feifei Qiu
Pharmaceuticals 2026, 19(1), 134; https://doi.org/10.3390/ph19010134 - 12 Jan 2026
Viewed by 204
Abstract
Lidocaine, an amide-type regional anesthetic, has been an important medication in the field of anesthesia since its clinical approval. Recently, lidocaine has emerged as a powerful immunomodulatory agent beyond its classical anesthetic properties. This review has summarized the recent basic and clinical studies [...] Read more.
Lidocaine, an amide-type regional anesthetic, has been an important medication in the field of anesthesia since its clinical approval. Recently, lidocaine has emerged as a powerful immunomodulatory agent beyond its classical anesthetic properties. This review has summarized the recent basic and clinical studies with sufficient evidence on the multifaceted effects of lidocaine on both innate and adaptive immune cells, including macrophages, neutrophils, eosinophils, basophils, natural killer (NK) cells, mast cells, dendritic cells (DCs), monocytes, and T lymphocytes. We have also detailed how lidocaine affects critical cellular processes, such as cellular polarization, cytokine production, phagocytosis, and apoptosis, through multiple signaling pathways, including NF-κB, TLR4/p38 MAPK, voltage-sensitive sodium channels, HIF1α, TGF-β/Smad3, AMPK-SOCS3, TBK1-IRF7, and G protein-coupled receptors. These immunoregulatory effects of lidocaine are dependent on its concentration, duration of action, and the microenvironment. The immunomodulatory actions of lidocaine may contribute to its potential therapeutic value in various settings of diseases, such as cancer, sepsis, acute lung injury, asthma, organ transplantation, ischemia–reperfusion injury (IRI), and diabetes. We propose that lidocaine can be repurposed as an immunomodulator for treating immune-mediated inflammatory diseases. However, future research should define optimal dosing strategies, validate its mechanisms of action in clinical trials, and explore its novel clinical applications as a complementary immunotherapy. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

23 pages, 5093 KB  
Article
Positive Effects of Allicin on Cytotoxicity, Antioxidative Status, and Immunity in “Eriocheir sinensis” Hepatopancreatic Cells Against Oxidative Stress-Induced Injury
by Yiqing Guo, Peng Huang, Wenhui Wang, Jingwen Wu, Jinliang Du, Jiayi Li, Jiancao Gao, Haojun Zhu, Jun Gao, Yao Zheng, Yanbing Zhuang, Gangchun Xu and Liping Cao
Antioxidants 2026, 15(1), 93; https://doi.org/10.3390/antiox15010093 - 12 Jan 2026
Viewed by 145
Abstract
Oxidative stress represents a critical threat to aquatic animal health and aquaculture productivity. Allicin, a natural plant extract, has not been systematically investigated for its antioxidant mechanisms in aquatic crustaceans. This study established in vitro and in vivo models of tert-butyl hydroperoxide (T-BHP)-induced [...] Read more.
Oxidative stress represents a critical threat to aquatic animal health and aquaculture productivity. Allicin, a natural plant extract, has not been systematically investigated for its antioxidant mechanisms in aquatic crustaceans. This study established in vitro and in vivo models of tert-butyl hydroperoxide (T-BHP)-induced oxidative stress in Chinese mitten crabs (Eriocheir sinensis) to evaluate the hepatoprotective effects of allicin. Integrating biochemical, transcriptomic, and ultrastructural analyses, we found that allicin significantly alleviated T-BHP-induced cytotoxicity and oxidative damage in vitro. Mechanistically, allicin up-regulated antioxidant genes including glutathione peroxidase (gpx) and thioredoxin reductase 1 (trxr1), and down-regulated pro-inflammatory cytokines such as interleukin-1 beta (il-1β), suggesting the concomitant activation of the Nrf2 signaling pathway and inhibition of the p38-MAPK/NF-κB pathway. Transcriptomics further indicated its role in restoring proteostasis and mitochondrial function. A 35-day feeding trial validated these findings in vivo; dietary supplementation with 300 mg·kg−1 allicin effectively reversed T-BHP-induced disturbances in antioxidant enzyme activities and immune-related gene expression. These consistent findings demonstrate that allicin alleviates hepatopancreatic oxidative damage through multi-pathway synergism, supporting its potential as a green and effective antioxidant feed additive in aquaculture. Full article
Show Figures

Figure 1

13 pages, 2502 KB  
Article
Comparative Transcriptome Analysis Reveals the Seawater Adaptation Mechanism in Pseudaspius hakonensis
by Ziyue Xu, Wen Zheng, Wenjun Chen, Min Zhou, Dongdong Zhai, Ming Xia, Hongyan Liu, Fei Xiong and Ying Wang
Genes 2026, 17(1), 76; https://doi.org/10.3390/genes17010076 - 9 Jan 2026
Viewed by 216
Abstract
Background: The family Cyprinidae is predominantly restricted to freshwater habitats, making the evolution of diadromy and seawater adaptation exceptionally rare within this group. Pseudaspius hakonensis, a rare anadromous cyprinid, and its strictly freshwater congener P. leptocephalus, provide an ideal comparative model [...] Read more.
Background: The family Cyprinidae is predominantly restricted to freshwater habitats, making the evolution of diadromy and seawater adaptation exceptionally rare within this group. Pseudaspius hakonensis, a rare anadromous cyprinid, and its strictly freshwater congener P. leptocephalus, provide an ideal comparative model to investigate the molecular mechanisms underlying salinity adaptation. This study aimed to elucidate the tissue-specific transcriptional reprogramming, identify candidate genes and key pathways, and explore their association with seawater acclimation in P. hakonensis. Methods: We performed comparative transcriptomic analyses of gill, liver, and kidney tissues from both species using RNA-Seq. Sequencing reads were aligned to a high-quality reference genome of P. hakonensis. Differential expression analysis was conducted using DESeq2, followed by functional enrichment analyses (GO and KEGG) to identify significant biological processes and pathways. Results: A total of 8784, 5965, and 5719 differentially expressed genes (DEGs) were identified in gill, kidney, and liver tissues, respectively, with the gill showing the highest differences. Functional enrichment revealed tissue-specific roles: gill DEGs were associated with protein synthesis and energy metabolism; kidney DEGs with transport and detoxification; and liver DEGs with metabolic regulation and stress signaling. Cross-tissue analysis highlighted three core pathways consistently enriched: MAPK signaling, ABC transporters, and glutathione metabolism. Key candidate genes, including DUSP10, SLC38A2, ATP8B1, GSTA4, and MGST1, were significantly upregulated in P. hakonensis. Conclusions: This first multi-tissue transcriptomic comparison of an anadromous and a freshwater cyprinid reveals pervasive, tissue-specific molecular reprogramming underlying seawater adaptation in P. hakonensis. The coordinated activation of MAPK signaling, glutathione metabolism, and transporter pathways suggests an integrated regulatory network for osmoregulation and stress resistance. These findings provide novel insights into the genetic basis of salinity adaptation in cyprinids and identify candidate genes for future functional validation. Full article
(This article belongs to the Special Issue Innovations in Aquaculture Breeding via Genetic Technologies)
Show Figures

Figure 1

20 pages, 6603 KB  
Article
Unveiling the Genomic Landscape of Yan Goose (Anser cygnoides): Insights into Population History and Selection Signatures for Growth and Adaptation
by Shangzong Qi, Zhenkang Ai, Yuchun Cai, Yang Zhang, Wenming Zhao and Guohong Chen
Animals 2026, 16(2), 194; https://doi.org/10.3390/ani16020194 - 8 Jan 2026
Viewed by 164
Abstract
The Yan goose (YE, Anser cygnoides) is a valuable indigenous poultry genetic resource, renowned for its superior meat quality and environmental adaptability. Despite its economic importance, the genetic basis underlying these adaptive traits remains unclear. In this study, we employed whole-genome resequencing [...] Read more.
The Yan goose (YE, Anser cygnoides) is a valuable indigenous poultry genetic resource, renowned for its superior meat quality and environmental adaptability. Despite its economic importance, the genetic basis underlying these adaptive traits remains unclear. In this study, we employed whole-genome resequencing (WGS) to perform high-throughput sequencing on a conserved population of 15 samples. Bioinformatic analyses were conducted to systematically evaluate the population’s genetic structure, and a genome-wide scan for selection signals related to economically significant traits was performed using the integrated haplotype score (iHS) method. An average of 4.43 million high-quality SNPs were identified, which were predominantly located in intergenic and intronic regions. Population structure analysis revealed a close genetic relationship within the conserved population of YE, with no significant lineage stratification observed. Pairwise sequentially Markovian coalescent (PSMC) analysis indicated that the YE underwent a severe genetic bottleneck during the Last Glacial Maximum (LGM), followed by gradual population recovery in the early Neolithic period. Genome-wide selection signal scanning identified multiple genomic regions under strong selection, annotating key genes associated with growth and development (e.g., GHRL, AKT1, and MAPK3), lipid deposition (e.g., PLPP4, SAMD8, and LPIN1), and disease resistance and stress resilience (e.g., TP53, STAT3). Functional enrichment analysis revealed significant enrichment of these genes in pathways related to glycerophospholipid metabolism (p < 0.01), purine metabolism (p < 0.01), and immune response (p < 0.01). This study not only provides a theoretical foundation for the scientific conservation of the YE germplasm resources but also offers valuable genomic resources for identifying functional genes underlying important economic traits and advancing molecular breeding strategies. Full article
(This article belongs to the Special Issue Genetic Diversity and Conservation of Local Poultry Breeds)
Show Figures

Figure 1

16 pages, 10359 KB  
Article
Gamma-Oryzanol Attenuates Aortic Valve Interstitial Cell Calcification via Suppression of BMP2-SMAD and MAPK Signaling Pathways
by Mausam Thapa, Saugat Shiwakoti, Dalseong Gong, Ju-Young Ko, Yeon-Hyang Gwak and Min-Ho Oak
Biomolecules 2026, 16(1), 107; https://doi.org/10.3390/biom16010107 - 8 Jan 2026
Viewed by 245
Abstract
Calcific aortic valve stenosis (CAVS) is a progressive cardiovascular disease associated with oxidative stress-driven osteogenic differentiation of valvular interstitial cells (VICs), yet no pharmacological therapy can prevent its progression. γ-oryzanol (γ-ORZ), a rice bran-derived phytosteryl ferulate, exhibits potent antioxidative and anti-inflammatory activities that [...] Read more.
Calcific aortic valve stenosis (CAVS) is a progressive cardiovascular disease associated with oxidative stress-driven osteogenic differentiation of valvular interstitial cells (VICs), yet no pharmacological therapy can prevent its progression. γ-oryzanol (γ-ORZ), a rice bran-derived phytosteryl ferulate, exhibits potent antioxidative and anti-inflammatory activities that may counteract valvular calcification. Here, we show that γ-ORZ markedly attenuates PCM-induced intracellular ROS elevation, osteogenic differentiation, and calcium phosphate deposition in porcine VICs (pVICs). In addition, RT-qPCR and Western blot analyses revealed significant downregulation of calcification markers (RUNX2, OPN, BMP2), along with suppressed SMAD1/5/9 transcription and phosphorylation, decreased p38/ERK MAPK activation, and reduced ALP activity. Collectively, these findings indicate that γ-ORZ mitigates oxidative stress-mediated valvular calcification by inhibiting both canonical and non-canonical BMP2-SMAD/MAPK signaling, suggesting its potential as a medicinal candidate for early intervention in CAVS. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Aortic Diseases)
Show Figures

Figure 1

14 pages, 2843 KB  
Article
Integrative Application of Transcriptomics and Metabolomics Reveals Molecular Insight into Metabolomic Variations in Chinese Mitten Crab Eriocheir sinensis Harvested from Lake Datong and Adjacent Pond
by Lehe Lin, Yiming Pang, Wengang Xu, Chun Wang and Huafeng Zou
Biology 2026, 15(2), 110; https://doi.org/10.3390/biology15020110 - 6 Jan 2026
Viewed by 200
Abstract
As an important economic aquatic product in China, the farming method of Eriocheir sinensis significantly impacts its quality and physiological metabolism. In this study, the effects of lake (LK) farm and pond (PD) farm on the gene expression profiles and metabolic pathways in [...] Read more.
As an important economic aquatic product in China, the farming method of Eriocheir sinensis significantly impacts its quality and physiological metabolism. In this study, the effects of lake (LK) farm and pond (PD) farm on the gene expression profiles and metabolic pathways in E. sinensis were evaluated by integrating transcriptomic and metabolomic analyses. A total of 812 differentially expressed genes (DEGs) were identified in the hepatopancreas of crabs. The DEGs were mainly enriched in nutrient reservoir activity, regulation of response to oxidative stress, and lipid transporter activity. In addition, LC-MS analysis identified 410 significantly differential metabolites, and KEGG pathway enrichment showed that these metabolites were mainly enriched in the MAPK signaling pathway, HIF-1 signaling pathway, and glycerolipid metabolism. Integrated transcriptomic and metabolomic analyses revealed that the AMPK signaling pathway, cytochrome P450-mediated xenobiotic metabolism, glycerophospholipid metabolism, and the apoptosis signaling pathway collectively exert a significant influence on the growth performance of crabs. Collectively, our findings demonstrated that the crabs in the LK group exhibit enhanced antioxidant and detoxification capacities, concomitant with reduced protein synthesis and energy metabolism, and underwent increased apoptotic events. The finding of this study will provide valuable and novel insight into crab farming practices in different aquaculture environments, providing theoretical foundations for optimizing ecological aquaculture models in Datong Lakes’ crab farms. Specifically, combined supplementation with natural feed organisms and mechanical aeration may effectively mitigate benthic hypoxia and nutritional deficits, thereby promoting sustainable production in the lake-based culture of crabs. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

15 pages, 2339 KB  
Article
Characterization of RNA Editing in Oxidative and Glycolytic Skeletal Muscles of Yak
by Yilin Shi, Xuemei Wu, Chunnian Liang, Xian Guo, Xiaoming Ma, Ping Yan, Min Chu and Xiaoyun Wu
Biology 2026, 15(1), 97; https://doi.org/10.3390/biology15010097 - 2 Jan 2026
Viewed by 371
Abstract
Fast-twitch and slow-twitch muscle fibers not only differ in metabolic characteristics and physiological functions but also significantly influence the texture of livestock meat. RNA editing represents an important post-transcriptional regulatory process that can influence both gene expression and the resulting protein function. However, [...] Read more.
Fast-twitch and slow-twitch muscle fibers not only differ in metabolic characteristics and physiological functions but also significantly influence the texture of livestock meat. RNA editing represents an important post-transcriptional regulatory process that can influence both gene expression and the resulting protein function. However, studies on RNA editing events in yak muscle remain limited. This study systematically identified RNA editing events in yak biceps femoris (BF, n = 3) and obliquus externus abdominis (OEA, n = 3) using transcriptomic data, discovering 17,713 unique editing sites, most located in non-coding regions. Within coding regions, 3350 sites were detected, with 1195 resulting in non-synonymous amino acid substitutions. Further analysis revealed that 785 sites potentially affected miRNA binding sites, suggesting RNA editing may participate in miRNA-mediated gene regulation. Tukey’s post hoc test (p < 0.05) identified 242 sites (involving 170 genes) with significantly different editing levels between BF and OEA. KEGG pathway analysis indicated that genes with differential RNA editing were predominantly associated with pathways involved in muscle fiber type transitions, including the MAPK and calcium signaling pathways. Collectively, this study maps the RNA editing landscape in yak muscle tissue and identifies distinct, fiber-type-specific RNA editing patterns between oxidative and glycolytic muscle fibers, including differences in editing levels and site distributions, supporting a potential association between RNA editing and muscle fiber type transformation. Full article
(This article belongs to the Special Issue Nutritional Physiology of Animals)
Show Figures

Figure 1

22 pages, 3584 KB  
Article
Effects of Chlorogenic Acid on Cellular Senescence in an In Vitro Model of 3T3-L1 Murine Adipocytes
by Maria Sofia Molonia, Federica Lina Salamone, Santi Trischitta, Antonella Saija, Francesco Cimino and Antonio Speciale
Molecules 2026, 31(1), 167; https://doi.org/10.3390/molecules31010167 - 1 Jan 2026
Viewed by 268
Abstract
Cellular senescence is a stress-induced process that contributes to adipose tissue dysfunction by promoting inflammation, impaired adipogenesis, and insulin resistance, alterations that are closely associated with age-related cellular dysfunction and metabolic disorders. In this study, we evaluated the protective role of chlorogenic acid [...] Read more.
Cellular senescence is a stress-induced process that contributes to adipose tissue dysfunction by promoting inflammation, impaired adipogenesis, and insulin resistance, alterations that are closely associated with age-related cellular dysfunction and metabolic disorders. In this study, we evaluated the protective role of chlorogenic acid (CGA), a polyphenol with known antioxidant and anti-inflammatory properties, against oxidative stress-induced senescence in murine 3T3-L1 adipocytes. The results obtained showed that CGA treatment significantly alleviated the senescent phenotype by restoring Lamin B1 levels and the Bcl-2/Bax ratio. Additionally, CGA downregulated key senescence-related cell cycle progression markers, modulating p53, p21, and MAPK signaling. CGA also restored insulin signaling through the PI3K-AKT-GLUT4 axis and improved glucose uptake, while attenuating oxidative stress, inflammatory cytokine expression, and extracellular matrix remodeling factors associated with SASP. Collectively, these findings support the role of CGA as a promising senotherapeutic nutraceutical able to reduce adipocyte senescence and its metabolic consequences, offering novel insights for the development of dietary supplements targeting age-related cellular dysfunction. Full article
Show Figures

Figure 1

Back to TopTop