Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = P-J (Pacific–Japan) pattern

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4517 KiB  
Article
Causes for the Occurrence of Severe Drought at the Ogasawara (Bonin) Islands during the El Niño Event in 2018–2019
by Hiroshi Matsuyama
Atmosphere 2024, 15(8), 1005; https://doi.org/10.3390/atmos15081005 - 20 Aug 2024
Viewed by 1073
Abstract
The Ogasawara (Bonin) Islands, consisting of more than 30 islands and located approximately 1000 km south of central Tokyo, occasionally experience severe droughts. Severe drought does not typically occur during El Niño (EN) events in the Ogasawara Islands because convective activity around the [...] Read more.
The Ogasawara (Bonin) Islands, consisting of more than 30 islands and located approximately 1000 km south of central Tokyo, occasionally experience severe droughts. Severe drought does not typically occur during El Niño (EN) events in the Ogasawara Islands because convective activity around the tropical western Pacific is inactive during EN events and correspondingly induces substantial precipitation around the Ogasawara Islands through the Pacific–Japan (P-J) pattern. However, a severe drought in 2018–2019 occurred during EN. In this study, we investigated the causes of drought occurrence. In 2018–2019, the El Niño Modoki (EN Modoki) event occurred simultaneously with EN, which decreased precipitation around the Ogasawara Islands from autumn to the following spring. This was induced by the positive sea level pressure anomaly and anticyclonic circulation around the Ogasawara Islands peculiar to the EN Modoki condition. In relation to the 2018–2019 drought, the investigation of past drought events at the Ogasawara Islands revealed that the drought in the spring and summer of 1991 also occurred during the simultaneous occurrence of the EN and EN Modoki events. Full article
(This article belongs to the Special Issue Island Effects on Weather and Climate)
Show Figures

Figure 1

15 pages, 11885 KiB  
Article
Regional Characteristics of Summer Precipitation Anomalies in the Northeastern Maritime Continent
by Qi Xu, Zhaoyong Guan, Dachao Jin, Wei Chen and Jing Zhu
Atmosphere 2023, 14(7), 1059; https://doi.org/10.3390/atmos14071059 - 22 Jun 2023
Cited by 1 | Viewed by 1492
Abstract
Based on the monthly mean reanalysis data from NCEP/NCAR (National Centers for Environmental Prediction/ National Center for Atmospheric Research) and GPCP (Global Precipitation Climatology Project) (1979–2020), the regional characteristics of precipitation in the warm pool side of the Maritime Continent (MC) and the [...] Read more.
Based on the monthly mean reanalysis data from NCEP/NCAR (National Centers for Environmental Prediction/ National Center for Atmospheric Research) and GPCP (Global Precipitation Climatology Project) (1979–2020), the regional characteristics of precipitation in the warm pool side of the Maritime Continent (MC) and the relationships between different precipitation patterns and atmospheric circulations are studied. The results show that there are significant correlations as well as differences between the precipitation in the east of the Philippines (area A) and that in the Pacific Ocean near the Northern Mariana Islands (area B). Precipitation in area A is closely related to the eastern Pacific ENSO (El Nino-Southern Oscillation) and EAP/PJ (East Asia-Pacific/Pacific-Japan) teleconnection pattern, while precipitation in area B is linked to the Indian Ocean basin-wide and the South China Sea summer monsoon. When the precipitation anomaly in area A is positive, the East Asian summer monsoon is weak. A cyclone appears to the northwest of area A at 850 hPa with convergence airflow. After filtering out the effects of precipitation in area B, the cyclone retreats to the west, and an anticyclone appears to the southeast of area A. When the precipitation is above normal in area B, the circulation and water vapor transportation are similar to that in area A but more to the east. The updraft and downdrafts to both north and south sides of area B form two closed meridional vertical circulations. When the influence of area A is moved out, the circulation center in the warm pool area moves eastward. This research contributes to a better understanding of the regional characteristics of the Maritime Continent and the East Asian summer monsoon. Full article
Show Figures

Figure 1

11 pages, 1903 KiB  
Article
The Southwest China Flood of July 2018 and Its Causes
by Lijuan Wang, Lin Wang, Yuyun Liu, Wei Gu, Peiqiang Xu and Wen Chen
Atmosphere 2019, 10(5), 247; https://doi.org/10.3390/atmos10050247 - 6 May 2019
Cited by 8 | Viewed by 3992
Abstract
Excessive rainfall was observed over Southwest China in July 2018, leading to floods in several major tributaries of the Yangtze River and landslide and debris flow in the neighboring provinces. The rainfall during 7–11 July was unusually heavy and broke the record that [...] Read more.
Excessive rainfall was observed over Southwest China in July 2018, leading to floods in several major tributaries of the Yangtze River and landslide and debris flow in the neighboring provinces. The rainfall during 7–11 July was unusually heavy and broke the record that can be traced back to 1961. The occurrence of the excessive rain can be attributed to the anomalous convection over the western North Pacific and the presence of a mid-latitude Rossby wave train. On one hand, the convection over the western North Pacific was anomalously strong in July 2018, and it could have excited the negative phase of the Pacific–Japan pattern and led to a northwestward shift of the western Pacific subtropical high. Hence, the water vapor transport toward inland China including Southwest China was enhanced, providing a favorable moisture environment for precipitation. On the other hand, a mid-latitude Rossby wave train was observed to propagate from Northern Europe towards East Asia, which was conducive to anomalous ascending motion over Southwest China via warm advection and differential vorticity advection, creating a favorable dynamical condition for precipitation. As a result, the combination of the two effects mentioned above led to the occurrence of the flood over Southwest China in July 2018. Full article
(This article belongs to the Special Issue Floods and Climate)
Show Figures

Figure 1

Back to TopTop