Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Orientia spp.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1457 KiB  
Article
Exploring Pathogenic and Zoonotic Bacteria from Wild Rodents, Dogs, and Humans of the Ngorongoro District in Tanzania Using Metagenomics Next-Generation Sequencing
by Amina Ramadhani Issae, Abdul Selemani Katakweba, Rose Peter Kicheleri, Augustino Alfred Chengula, Marco van Zwetselaar and Christopher Jacob Kasanga
Zoonotic Dis. 2023, 3(3), 226-242; https://doi.org/10.3390/zoonoticdis3030019 - 1 Sep 2023
Cited by 1 | Viewed by 3509
Abstract
Globally, zoonoses have serious consequences due to their socioeconomic impacts. Ngorongoro District is home to a diverse range of wildlife and domestic animals, including rodents and dogs, which often coexist in close proximity with humans. The aim of the study was to identify [...] Read more.
Globally, zoonoses have serious consequences due to their socioeconomic impacts. Ngorongoro District is home to a diverse range of wildlife and domestic animals, including rodents and dogs, which often coexist in close proximity with humans. The aim of the study was to identify the zoonotic bacteria present in wild rodents, domestic dogs, and humans using metagenomics next-generation sequencing technology. A cross-sectional study was conducted in 2022. This study used both Illumina and Oxford Nanopore sequencing technologies to identify bacteria in 530 blood samples collected from humans (n = 200), wild rodents (n = 230), and dogs (n = 100). Several zoonotic airborne/contagious bacteria, including Mycobacterium spp., Mycoplasma spp., Bordetella spp., and Legionella spp., were detected in wild rodents, domestic dogs, and humans. Arthropod-borne zoonotic bacteria such as Bartonella spp., Borrelia spp., and Rickettsia spp. were detected in all three hosts, while Orientia spp. was found in wild rodents and domestic dogs. Yersinia pestis, Streptobacillus spp. and Anaplasma spp. were found only in wild rodents. Other zoonotic bacteria found shared among wild rodents, domestic dogs, and humans are Leptospira spp., Brucella spp., and Salmonella spp. Generally, wild rodents had the highest prevalence of zoonotic bacterial species when compared to domestic dogs and humans. The detection of zoonotic bacteria in rodents, dogs, and humans supports the hypothesis that infections can spread between animals and humans sharing the same environment. Full article
Show Figures

Graphical abstract

16 pages, 1460 KiB  
Article
Molecular Surveillance for Vector-Borne Bacteria in Rodents and Tree Shrews of Peninsular Malaysia Oil Palm Plantations
by Siti Nurul Izzah Mohd-Azami, Shih Keng Loong, Jing Jing Khoo, Nurul Aini Husin, Fang Shiang Lim, Nur Hidayana Mahfodz, Siti Nabilah Ishak, Farah Shafawati Mohd-Taib, Benjamin L. Makepeace and Sazaly AbuBakar
Trop. Med. Infect. Dis. 2023, 8(2), 74; https://doi.org/10.3390/tropicalmed8020074 - 19 Jan 2023
Cited by 4 | Viewed by 2843
Abstract
Many human clinical cases attributed to vector-borne pathogens are underreported in Malaysia, especially in rural localities where healthcare infrastructures are lacking. Here, 217 small mammals, consisting of rodents and tree shrews, were trapped in oil palm plantations in the Peninsular Malaysia states of [...] Read more.
Many human clinical cases attributed to vector-borne pathogens are underreported in Malaysia, especially in rural localities where healthcare infrastructures are lacking. Here, 217 small mammals, consisting of rodents and tree shrews, were trapped in oil palm plantations in the Peninsular Malaysia states of Johor and Perak. Species identification was performed using morphological and DNA barcoding analyses, and 203 small mammals were included in the detection of selected vector-borne bacteria. The DNA extracted from the spleens was examined for Orientia tsutsugamushi, Borrelia spp., Bartonella spp. and Rickettsia spp. using established PCR assays. The small mammals collected in this study included Rattus tanezumi R3 mitotype (n = 113), Rattus argentiventer (n = 24), Rattus tiomanicus (n = 22), Rattus exulans (n = 17), Rattus tanezumi sensu stricto (n = 1) and Tupaia glis (n = 40). Orientia tsutsugamushi, Borrelia spp. and Bartonella phoceensis were detected in the small mammals with the respective detection rates of 12.3%, 5.9% and 4.9%. Rickettsia spp., however, was not detected. This study encountered the presence of both Lyme disease and relapsing fever-related borreliae in small mammals collected from the oil palm plantation study sites. All three microorganisms (Orientia tsutsugamushi, Borrelia spp. and Bartonella phoceensis) were detected in the R. tanezumi R3 mitotype, suggesting that the species is a competent host for multiple microorganisms. Further investigations are warranted to elucidate the relationships between the ectoparasites, the small mammals and the respective pathogens. Full article
(This article belongs to the Section Vector-Borne Diseases)
Show Figures

Figure 1

18 pages, 12308 KiB  
Article
Habitat and Season Drive Chigger Mite Diversity and Abundance on Small Mammals in Peninsular Malaysia
by Hadil Alkathiry, Ahmed Al-Rofaai, Zubaidah Ya’cob, Tamsin S. Cutmore, Siti Nurul Izzah Mohd-Azami, Nurul Aini Husin, Fang Shiang Lim, Sirikamon Koosakulnirand, Nor Hidayana Mahfodz, Siti Nabilah Ishak, Shih Keng Loong, Alexandr Stekolnikov, Farah Shafawati Mohd-Taib, Sazaly Abubakar, Benjamin L. Makepeace, Kittipong Chaisiri and Jing Jing Khoo
Pathogens 2022, 11(10), 1087; https://doi.org/10.3390/pathogens11101087 - 23 Sep 2022
Cited by 14 | Viewed by 3498
Abstract
Chigger mites are vectors of the bacterial disease scrub typhus, caused by Orientia spp. The bacterium is vertically transmitted in the vector and horizontally transmitted to terrestrial vertebrates (primarily wild small mammals), with humans as incidental hosts. Previous studies have shown that the [...] Read more.
Chigger mites are vectors of the bacterial disease scrub typhus, caused by Orientia spp. The bacterium is vertically transmitted in the vector and horizontally transmitted to terrestrial vertebrates (primarily wild small mammals), with humans as incidental hosts. Previous studies have shown that the size of the chigger populations is correlated with the density of small mammals in scrub typhus-endemic regions. Here, we explore interactions between the small mammals and chiggers in two oil palm plantations located in the Perak and Johor states of Peninsular Malaysia. The location in Perak also contained an aboriginal (Orang Asli) settlement. A ~5% sub-sample from 40,736 chigger specimens was identified from five species of small mammals (n = 217), revealing 14 chigger species, including two new records for Malaysia. The abundance and species richness of chiggers were significantly affected by habitat type (highest in forest border), state (highest in Perak), and season (highest in dry). The overall prevalence of Orientia tsutsugamushi DNA in small-mammal tissues was 11.7% and was not significantly affected by host or habitat characteristics, but in Johor, was positively associated with infestation by Leptotrombidium arenicola. These findings highlight the risk of contracting scrub typhus in oil palm plantations and associated human settlements. Full article
(This article belongs to the Special Issue Latest Updates on Scrub Typhus (Orientia spp.))
Show Figures

Figure 1

11 pages, 1583 KiB  
Communication
Rickettsia felis and Other Rickettsia Species in Chigger Mites Collected from Wild Rodents in North Carolina, USA
by Loganathan Ponnusamy, Reuben Garshong, Bryan S. McLean, Gideon Wasserberg, Lance A. Durden, Dac Crossley, Charles S. Apperson and R. Michael Roe
Microorganisms 2022, 10(7), 1342; https://doi.org/10.3390/microorganisms10071342 - 2 Jul 2022
Cited by 12 | Viewed by 2801
Abstract
Chiggers are vectors of rickettsial pathogenic bacteria, Orientia spp., that cause the human disease, scrub typhus, in the Asian–Pacific area and northern Australia (known as the Tsutsugamushi Triangle). More recently, reports of scrub typhus in Africa, southern Chile, and the Middle East have [...] Read more.
Chiggers are vectors of rickettsial pathogenic bacteria, Orientia spp., that cause the human disease, scrub typhus, in the Asian–Pacific area and northern Australia (known as the Tsutsugamushi Triangle). More recently, reports of scrub typhus in Africa, southern Chile, and the Middle East have reshaped our understanding of the epidemiology of this disease, indicating it has a broad geographical distribution. Despite the growing number of studies and discoveries of chigger-borne human disease outside of the Tsutsugamushi Triangle, rickettsial pathogens in chigger mites in the US are still undetermined. The aim of our study was to investigate possible Rickettsia DNA in chiggers collected from rodents in North Carolina, USA. Of 46 chiggers tested, 47.8% tested positive for amplicons of the 23S-5S gene, 36.9% tested positive for 17 kDa, and 15.2% tested positive for gltA. Nucleotide sequence analyses of the Rickettsia-specific 23S-5S intergenic spacer (IGS), 17 kDa, and gltA gene fragments indicated that the amplicons from these chiggers were closely related to those in R. felis, R. conorii, R. typhi, and unidentified Rickettsia species. In this study, we provide the first evidence of Rickettsia infection in chiggers collected from rodents within the continental USA. In North Carolina, a US state with the highest annual cases of spotted fever rickettsioses, these results suggest chigger bites could pose a risk to public health, warranting further study. Full article
(This article belongs to the Section Public Health Microbiology)
Show Figures

Figure 1

19 pages, 1089 KiB  
Review
Moonlighting in Rickettsiales: Expanding Virulence Landscape
by Ana Luísa Matos, Pedro Curto and Isaura Simões
Trop. Med. Infect. Dis. 2022, 7(2), 32; https://doi.org/10.3390/tropicalmed7020032 - 19 Feb 2022
Cited by 20 | Viewed by 5292
Abstract
The order Rickettsiales includes species that cause a range of human diseases such as human granulocytic anaplasmosis (Anaplasma phagocytophilum), human monocytic ehrlichiosis (Ehrlichia chaffeensis), scrub typhus (Orientia tsutsugamushi), epidemic typhus (Rickettsia prowazekii), murine typhus ( [...] Read more.
The order Rickettsiales includes species that cause a range of human diseases such as human granulocytic anaplasmosis (Anaplasma phagocytophilum), human monocytic ehrlichiosis (Ehrlichia chaffeensis), scrub typhus (Orientia tsutsugamushi), epidemic typhus (Rickettsia prowazekii), murine typhus (R. typhi), Mediterranean spotted fever (R. conorii), or Rocky Mountain spotted fever (R. rickettsii). These diseases are gaining a new momentum given their resurgence patterns and geographical expansion due to the overall rise in temperature and other human-induced pressure, thereby remaining a major public health concern. As obligate intracellular bacteria, Rickettsiales are characterized by their small genome sizes due to reductive evolution. Many pathogens employ moonlighting/multitasking proteins as virulence factors to interfere with multiple cellular processes, in different compartments, at different times during infection, augmenting their virulence. The utilization of this multitasking phenomenon by Rickettsiales as a strategy to maximize the use of their reduced protein repertoire is an emerging theme. Here, we provide an overview of the role of various moonlighting proteins in the pathogenicity of these species. Despite the challenges that lie ahead to determine the multiple potential faces of every single protein in Rickettsiales, the available examples anticipate this multifunctionality as an essential and intrinsic feature of these obligates and should be integrated into available moonlighting repositories. Full article
(This article belongs to the Special Issue The Past and Present Threat of Rickettsial Diseases (Volume II))
Show Figures

Figure 1

9 pages, 1310 KiB  
Article
Diagnostic Accuracy of the InBios Scrub Typhus Detect™ ELISA for the Detection of IgM Antibodies in Chittagong, Bangladesh
by Stuart D. Blacksell, Hugh W. F. Kingston, Ampai Tanganuchitcharnchai, Meghna Phanichkrivalkosil, Mosharraf Hossain, Amir Hossain, Aniruddha Ghose, Stije J. Leopold, Arjen M. Dondorp, Nicholas P. J. Day and Daniel H. Paris
Trop. Med. Infect. Dis. 2018, 3(3), 95; https://doi.org/10.3390/tropicalmed3030095 - 1 Sep 2018
Cited by 19 | Viewed by 4918
Abstract
Here we estimated the accuracy of the InBios Scrub Typhus Detect™ immunoglobulin M (IgM) ELISA to determine the optimal optical density (OD) cut-off values for the diagnosis of scrub typhus. Patients with undifferentiated febrile illness from Chittagong, Bangladesh, provided samples for reference testing [...] Read more.
Here we estimated the accuracy of the InBios Scrub Typhus Detect™ immunoglobulin M (IgM) ELISA to determine the optimal optical density (OD) cut-off values for the diagnosis of scrub typhus. Patients with undifferentiated febrile illness from Chittagong, Bangladesh, provided samples for reference testing using (i) qPCR using the Orientia spp. 47-kDa htra gene, (ii) IFA ≥1:3200 on admission, (iii) immunofluorescence assay (IFA) ≥1:3200 on admission or 4-fold rise to ≥3200, and (iv) combination of PCR and IFA positivity. For sero-epidemiological purposes (ELISA vs. IFA ≥1:3200 on admission or 4-fold rise to ≥3200), the OD cut-off for admission samples was ≥1.25, resulting in a sensitivity (Sn) of 91.5 (95% confidence interval (95% CI: 96.8–82.5) and a specificity (Sp) of 92.4 (95% CI: 95.0–89.0), while for convalescent samples the OD cut-off was ≥1.50 with Sn of 66.0 (95% CI: 78.5–51.7) and Sp of 96.0 (95% CI: 98.3–92.3). Comparisons against comparator reference tests (ELISA vs. all tests including PCR) indicated the most appropriate cut-off OD to be within the range of 0.75–1.25. For admission samples, the best Sn/Sp compromise was at 1.25 OD (Sn 91.5%, Sp 92.4%) and for convalescent samples at 0.75 OD (Sn 69.8%, Sp 89.5%). A relatively high (stringent) diagnostic cut-off value provides increased diagnostic accuracy with high sensitivity and specificity in the majority of cases, while lowering the cut-off runs the risk of false positivity. This study underlines the need for regional assessment of new diagnostic tests according to the level of endemicity of the disease given the high levels of residual or cross-reacting antibodies in the general population. Full article
(This article belongs to the Special Issue The Past and Present Threat of Rickettsial Diseases)
Show Figures

Figure 1

7 pages, 207 KiB  
Article
Ixodes holocyclus Tick-Transmitted Human Pathogens in North-Eastern New South Wales, Australia
by Stephen R. Graves, Chrissie Jackson, Hazizul Hussain-Yusuf, Gemma Vincent, Chelsea Nguyen, John Stenos and Maurice Webster
Trop. Med. Infect. Dis. 2016, 1(1), 4; https://doi.org/10.3390/tropicalmed1010004 - 11 Aug 2016
Cited by 19 | Viewed by 5019
Abstract
A group of 14 persons who live in an area of Australia endemic for the Australian paralysis tick, Ixodes holocyclus, and who were involved in regularly collecting and handling these ticks, was examined for antibodies to tick-transmitted bacterial pathogens. Five (36%) had [...] Read more.
A group of 14 persons who live in an area of Australia endemic for the Australian paralysis tick, Ixodes holocyclus, and who were involved in regularly collecting and handling these ticks, was examined for antibodies to tick-transmitted bacterial pathogens. Five (36%) had antibodies to Coxiella burnetii, the causative agent of Q fever and three (21%) had antibodies to spotted fever group (SFG) rickettsiae (Rickettsia spp). None had antibodies to Ehrlichia, Anaplasma, Orientia, or Borrelia (Lymedisease) suggesting that they had not been exposed to these bacteria. A total of 149 I. holocyclus ticks were examined for the citrate synthase (gltA) gene of the SFG rickettsiae and the com1 gene of C. burnetii; 23 (15.4%) ticks were positive for Rickettsia spp. and 8 (5.6%) positive for Coxiella spp. Sequencing of fragments of the gltA gene and the 17 kDa antigen gene from a selection of the ticks showed 99% and 100% homology, respectively, to Rickettsia australis, the bacterium causing Queenslandtick typhus. Thus, it appears that persons bitten by I. holocyclus in NE NSW, Australia have an approximate one in six risk of being infected with R. australis. Risks of Q fever were also high in this region but this may have been due to exposure by aerosol from the environment rather than by tick bite. A subset of 74 I. holocyclus ticks were further examined for DNA from Borrelia spp., Anaplasma spp. and Ehrlichia spp. but none was positive. Some of these recognised human bacterial pathogens associated with ticks may not be present in this Australian tick species from northeastern New South Wales. Full article
Back to TopTop