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Abstract: Many human clinical cases attributed to vector-borne pathogens are underreported in
Malaysia, especially in rural localities where healthcare infrastructures are lacking. Here, 217 small
mammals, consisting of rodents and tree shrews, were trapped in oil palm plantations in the Peninsu-
lar Malaysia states of Johor and Perak. Species identification was performed using morphological
and DNA barcoding analyses, and 203 small mammals were included in the detection of selected
vector-borne bacteria. The DNA extracted from the spleens was examined for Orientia tsutsugamushi,
Borrelia spp., Bartonella spp. and Rickettsia spp. using established PCR assays. The small mammals
collected in this study included Rattus tanezumi R3 mitotype (n = 113), Rattus argentiventer (n = 24),
Rattus tiomanicus (n = 22), Rattus exulans (n = 17), Rattus tanezumi sensu stricto (n = 1) and Tupaia glis
(n = 40). Orientia tsutsugamushi, Borrelia spp. and Bartonella phoceensis were detected in the small
mammals with the respective detection rates of 12.3%, 5.9% and 4.9%. Rickettsia spp., however,
was not detected. This study encountered the presence of both Lyme disease and relapsing fever-
related borreliae in small mammals collected from the oil palm plantation study sites. All three
microorganisms (Orientia tsutsugamushi, Borrelia spp. and Bartonella phoceensis) were detected in the R.
tanezumi R3 mitotype, suggesting that the species is a competent host for multiple microorganisms.
Further investigations are warranted to elucidate the relationships between the ectoparasites, the
small mammals and the respective pathogens.

Keywords: Bartonella phoceensis; Borrelia spp.; infectious disease; Orientia tsutsugamushi; Rattus spp.;
Rickettsia spp.

1. Introduction

Peridomestic small mammals such as rodents and scandentids (tree shrews) are ubiq-
uitously found in the tropics [1]. These animals are recognized as the hosts of various
zoonotic diseases that pose a serious threat to humanity [2]. In addition to having short
life cycles, different species of rodents can be found in sympatry due to their synanthropic
behavior. As such, it is anticipated that the increase in contact between humans and rodents
may promote pathogen transmission in human- dominated habitats [3]. In fact, vector-
borne bacteria such as Bartonella spp., Borrelia spp., Orientia tsutsugamushi and Rickettsia
spp. have become a health concern in Southeast Asia as they are increasingly implicated in
human infections [2,4].

Diseases caused by the O. tsutsugamushi (scrub typhus), Borrelia spp. (Lyme disease and
relapsing fever), Rickettsia spp. (typhus and spotted fevers) and Bartonella spp. (cat scratch
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disease and trench fever) commonly manifest as undifferentiated fever with headaches
and malaise [5–8]. Some of these diseases can be complicated and fatal if they are not
promptly treated [9,10]. Risk factors for these diseases appear to be associated with the
presence of animal hosts (e.g., rodents), location (more prevalent in rural and forested
areas), seasonality and climate, as well as certain occupations and human behaviors [11–13].
Exposures to pathogens causing these diseases have been detected among the Orang Asli
(indigenous people) of Peninsular Malaysia [9,14]. Their settlements near or within forested
areas and their lifestyle of forest foraging and hunting for wildlife increase their risk of
exposure to zoonotic and vector-borne pathogens [15–17].

One of the major factors influencing the risk of vector-borne pathogens is attributed to
changes in land use [18]. The increasing demand for palm oil had led to the development
of new plantations on previously forested lands. However, this trend was curtailed by
the Malaysian government’s pledge to maintain at least 50% forest cover in Peninsular
Malaysia [19]. Nevertheless, many plantations are already sharing borders with forests
and even residential areas [3]. This allows animals, especially peridomestic animals, to
roam freely between the forest, plantations and human habitations, potentially contracting,
harboring and transmitting diseases to humans living and working in such areas.

Despite the economic contribution of the palm oil industry to the development of
Malaysia, very little is known about the effects of vector-borne diseases carried by perido-
mestic animals on humans living and working in these plantations. This is compounded
by the fact that diseases caused by O. tsutsugamushi, Borrelia spp., Bartonella spp. and
Rickettsia spp. have undifferentiated symptoms compared to the more commonly reported
infections such as dengue fever [10,20]. Hence, there is an urgency to investigate the role of
peridomestic animals in the transmission of vector-borne pathogens to better understand
the dynamics of disease transmission at the oil palm plantation–human habitation inter-
face. The overall objective of the present study was to determine the presence of selected
vector-borne bacteria (O. tsutsugamushi, Borrelia spp., Bartonella spp. and Rickettsia spp.) in
rodents and tree shrews sampled from two oil palm plantations in Peninsular Malaysia.

2. Materials and Methods
2.1. To Identify the Rodent and Tree Shrew Species Available at Oil Palm Plantations

Archived specimens from the Tropical Infectious Diseases Research and Education
Centre (TIDREC), Universiti Malaya were utilized in this study. They consisted of tis-
sues of small mammals from two sampling sites, viz. at UM Plantations Sdn. Bhd.,
Johor (an oil palm plantation) and Kampung Tumbuh Hangat, Perak (oil palm plan-
tation bordering paddy fields and human settlements). These samples were collected
at different times between December 2018 and December 2019 [21]. Ethical approval
was obtained from the Universiti Malaya Institutional Animal Care and Use Committee
(G8/01082018/24052018-01/R) and permission to conduct the study at Kampung Tumbuh
Hangat, Perak was granted by the Department of Orang Asli Development (JAKOA),
Malaysia (JAKOA/PP.30.052Jld13 (32)). Approval for small mammal trapping was also
received from the University of Liverpool’s Animal Welfare and Ethics Review Body with
reference no. AWC0127.

All small mammals captured were initially identified using morphological analy-
sis [22]. Subsequently, tree shrew and rodent DNA barcoding was performed on DNA
extracted from their spleens and other organs. Extracted rodent and tree shrew DNA
was subjected to a polymerase chain reaction (PCR) targeting the cytochrome c oxidase I
(COI) gene to determine the rodent and tree shrew species group [23]. The organs were
stored at −80 ◦C immediately after harvesting and the extracted DNAs were aliquoted
into three tubes to avoid multiple freeze-thawing. The primers used are listed in Table 1.
Positive controls used were genomic DNAs of O. tsutsugamushi strain UT176 received
from University of Liverpool, United Kingdom, and Rickettsia roultii strain established
from a tick cell line in TIDREC. Long oligo DNAs were synthesized for the positive
controls of Borrelia spp. and Bartonella spp. The positive control fragments of the flag-
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ellin gene, flaB and the citrate synthase gene, gltA were obtained from Borrelia burgdorferi
NC001318.1 (501 bp) and Bartonella quintana NC005955 (410 bp), respectively. Nuclease-free
water was the negative control used in PCR protocols.

The remaining COI amplicons (approximately 20 µ` each) were purified and subse-
quently sequenced (Apical Scientific Sdn. Bhd., Seri Kembangan, Malaysia). The DNA
sequences obtained were trimmed and compared to those available in GenBank using the
Basic Local Alignment Search Tool (BLAST). Each identified species was deposited into the
GenBank accordingly.

2.2. To Detect the Presence of Vector-Borne Bacteria in the Rodents and Tree Shrews Captured in
Oil Palm Plantations

About 10 mg of each spleen tissue of the rodents and tree shrews was subjected
to DNA extraction following the NucleoSpin® Tissue Extraction Kit (Macherey-Nagel,
Düren, Germany) protocol. The extracted genomic DNA was utilized to amplify genes
specific for O. tsutsugamushi, Borrelia spp., Bartonella spp. and Rickettsia spp. The types
of surface antigen 47 kDa gene TSA47 specific to O. tsutsugamushi [24] and flaB specific
to the Borrelia spp. [25] were amplified according to previously published protocols. The
detection of Bartonella spp. and Rickettsia spp. followed two different PCR protocols that
target gltA [26–28]. Primers used in the present study are listed in Table 1.

The PCR-positive DNA samples for O. tsutsugamushi and Borrelia spp. were further
subjected to multi-locus sequence typing (MLST) following the protocols for Borrelia spp. [29]
and O. tsutsugamushi [30]. These protocols are available at their respective PubMLST
databases (https://pubmlst.org/organisms/borrelia-spp (accessed on 13 October 2021) and
https://pubmlst.org/organisms/orientia-tsutsugamushi (accessed on 13 October 2021). All
obtained amplicons were purified and subsequently sequenced in both directions by a third
party (Apical Scientific Sdn. Bhd., Malaysia). The DNA sequences obtained were trimmed
and compared to those available in GenBank and PubMLST.

Table 1. Primers used for DNA barcoding and pathogen detection.

Organism Target Primer Oligonucleotide Sequence (5′-3′) Amplicon Size
(bp) Reference

Rodents COI BatL5310 a,c ACTTCTGGGTGTCCAAAGAATCA 726 [23]
R6036R b,c CCTACTCRGCCATTTTACCTATG

Orientia tsutsugamushi TSA47 Ot-145F a ACAGGCCAAGATATTGGAAG 871 [24]
Ot-1780R b AATCGCCTTTAAACTAGATTTACTTATTA
Ot-263F a,c GTGCTAAGAAARGATGATACTTC 821

Ot-1133R b,c ACATTTAACATACCACGACGAAT

Bartonella spp. gltA BhCS.781p a,c GGGGACCAGCTCATGGTGG 379 [28]
BhCS.1137n b,c AATGCAAAAAGAACAGTAAACA

Borrelia spp. flaB BflaPAD a GATCARGCWCAAYATAACCAWATGCA 800 [25]
BflaPDU b AGATTCAAGTCTGTTTTGGAAAGC
BflaPBU a,c GCTGAAGAGCTTGGAATGCAACC 345
BflaPCR b,c TGATCAGTTATCATTCTAATAGCA

Rickettsia spp. gltA CS1d a,c ATGACTAATGGCAATAATAA 889
[26]

CS890r b,c GCTTTIAGCTACATATTTAGG
CS-239 a,c GCTCTTCTCATCCTATGGCTATTAT 830 [27]

CS-1069 b,c CAGGGTCTTCGTGCATTTCTT

a—Forward primer, b—reverse primer, c—sequencing primer.

2.3. To Determine the Genetic Relatedness of the Detected Bacteria to Well-Characterized Counterparts

Following bacteria identification using the BLAST tool, the primer-trimmed sequences
of the respective targeted genes were aligned using CLUSTALW, as implemented in
MEGAX [31]. All positions containing gaps and missing data were eliminated (complete
deletion option). Phylogenetic relationships of the pathogens detected in this study were
presented in phylogenetic trees using the Bayesian Markov Chain Monte Carlo (MCMC)

https://pubmlst.org/organisms/borrelia-spp
https://pubmlst.org/organisms/orientia-tsutsugamushi
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approach, as implemented in BEAST 1.10.4 [32]. The Hasegawa–Kishono–Yano (HKY)
model with the Gamma site (HKY + G) was selected for all the targeted genes using the
Bayesian Information Criterion (BIC) as implemented in MEGA11 [33]. The analysis was
performed under a strict molecular clock model with an MCMC chain length of 5 million
samplings every 1000 generations. The resulting MCMC trace file was analyzed and visual-
ized using Tracer Version 1.7.1 (Institute of Evolutionary Biology, University of Edinburgh,
UK) [34]. The maximum clade credibility (MCC) tree was produced using TreeAnnotator
1.10.4 (Institute of Evolutionary Biology, University of Edinburgh, UK) and visualized using
the Interactive Tree of Life (iTOL) (https://itol.embl.de/itol.cgi (accessed on 29 December
2022). A pairwise comparison analysis, as implemented in MEGA11, was conducted for
the O. tsutsugamushi sequences obtained after the phylogenetic analyses were completed.

3. Results
3.1. Distribution of Small Mammal Species

The morphological identification conducted on the tree shrews (n = 40) resulted in the
identification of a single species, Tupaia glis. The DNA barcoding revealed the identification
of five separate rodent species: Rattus tanezumi R3 mitotype (n = 113), Rattus argentiventer
(n = 24), Rattus tiomanicus (n = 22), Rattus exulans (n = 17) and Rattus tanezumi sensu stricto
(s.s.) (n = 1) (Table 2).

Table 2. The identification of small mammals trapped in Perak and Johor.

No. Species

Trapping Site

Total Number of
Individuals

Perak (n) Johor (n)

Residential
Areas Paddy Field Oil Palm

Plantation
Oil Palm

Plantation

1. Rattus tanezumi
R3 mitotype 14 2 45 52 113

2. Rattus tiomanicus 2 0 7 13 22
3. Rattus exulans 3 2 9 3 17

4. Rattus tanezumi
sensu stricto 0 1 0 0 1

5. Rattus
argentiventer 0 21 3 0 24

6. Tupaia glis 3 0 4 33 40
Total number of individuals 116 101 217

The R. tanezumi R3 mitotype (n = 113, 52.1%) predominated in both sites followed
by T. glis (n = 40, 18.4%), R. argentiventer (n = 24, 11.1%), R. tiomanicus (n = 22, 10.1%), R.
exulans (n = 17, 7.8%) and R. tanezumi s.s. (n = 1, 0.5%). Both sites had a similar number
of small mammals trapped. In Johor, T. glis (n = 33) outnumbered R. tiomanicus (n = 13)
and R. exulans (n = 3), while R. tanezumi s.s and R. argentiventer were not found. In Perak,
R. tanezumi s.s. was solely found in the paddy field, while R. tiomanicus and T. glis were
absent there. Additionally, R. argentiventer was absent in the residential areas. Out of the
217 trapped animals, 105 of them were females and 112 of them were males. The majority
of the captured animals were mature adults (n = 148, 68.2%) and subadults (n = 41, 18.9%),
followed by juveniles (n = 25, 11.5%); the age of the remaining 3 individuals could not
be ascertained.

The R. tanezumi R3 mitotype was found in all habitats, but predominantly in the oil
palm plantations. All the successful COI sequences of the rodents were deposited into the
Barcode of Life Data Systems (BOLD) (http://boldsystems.org (accessed on 14 January
2022) under the project code UMNPA as described in a previous study [21].

3.2. PCR Detection of Bacteria in Small Mammals

The DNA extracted from the spleens of 203 small mammals (rodents, n = 163 and
tree shrews, n = 40) was examined using the pathogen-specific PCR for the presence of O.

https://itol.embl.de/itol.cgi
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Trop. Med. Infect. Dis. 2023, 8, 74 5 of 16

tsutsugamushi, Borrelia spp., Bartonella spp. and Rickettsia spp. (Table 3). Rodent splenic
tissues insufficient for DNA extraction were excluded from the study (n = 14). The PCR
assays targeted the TSA47 gene for O. tsutsugamushi, the gltA gene for Bartonella spp. and
Rickettsia spp. and the flaB gene for Borrelia spp. Overall, 12.3% (25/203) of the small
mammals were positive for the presence of O. tsutsugamushi followed by Borrelia spp. at
5.9% (12/203) and Bartonella phoceensis at 4.9% (10/203). Rickettsia spp., however, was not
detected in any specimen.

Table 3. Vector-borne bacteria detected from the spleens of rodents and tree shrews.

Location Host Species Detected Vector-Borne Bacteria Number of Positive Individuals (n)

Perak Rattus tanezumi R3 mitotype Bartonella phoceensis 8
Orientia tsutsugamushi 11

Borrelia sp. (LD) 1
Borrelia sp. (RF) 4

Rattus exulans Borrelia sp. (undetermined) 1
Orientia tsutsugamushi 2

Rattus argentiventer Bartonella phoceensis 1
Orientia tsutsugamushi 2

Rattus tiomanicus Borrelia sp. (RF) 1

Tupaia glis Borrelia sp. (RF) 1

Johor Rattus tanezumi R3 mitotype Bartonella phoceensis 1
Orientia tsutsugamushi 7

Borrelia sp. (LD) 3

Rattus tiomanicus Orientia tsutsugamushi 1

Tupaia glis Orientia tsutsugamushi 2
Borrelia sp. (RF) 1

LD = Lyme disease-related; RF = relapsing fever-related.

The bacteria detection rate was higher in Perak (15.8%) compared to Johor (7.4%).
Orientia tsutsugamushi was detected in all small mammal species except for R. tanezumi s.s.
Borrelia spp. was detected in four species but not for R. tanezumi s.s. and R. argentiventer,
while B. phoceensis was detected only in the R. tanezumi R3 mitotype and R. argentiventer.
Orientia tsutsugamushi was detected most frequently in the R. tanezumi R3 mitotype at both
study sites (Perak, n = 11; Johor, n = 7) (Table 3). Bartonella phoceensis and Borrelia spp. were
the second most detected bacteria in Perak (n = 9) and Johor (n = 4). Furthermore, there
were four individuals co-infected with B. phoceensis and O. tsutsugamushi, with three from
Perak and one from Johor.

3.3. Sequence Analyses of the Detected Bacteria
3.3.1. Orientia tsutsugamushi

Phylogenetic analyses of the 825 bp sequences from the O. tsutsugamushi TSA47-positive
specimens grouped all of them together with two strains reported in Thailand
(UT176 and TA763) at 0.95 posterior probability (PP) (Figure 1). Sequences from the current
study (UM-SNI36 and UM-SNI40) clustered with the O. tsutsugamushi strain
TA763 (1.00 PP). The remaining 23 specimens that were clustered with the O. tsutsuga-
mushi strain UT176 (0.98 PP) had pairwise distances ranging from 0 to 1.61% between them.
Out of seven genes from the O. tsutsugamushi MLST scheme, we only managed to amplify
the succinyl-CoA synthetase (sucD) and pyruvate phosphate dikinase precursor (ppdK) genes
from one R. tanezumi R3 mitotype host. These sequences, however, could not be deposited
into the PubMLST database for O. tsutsugamushi as there were several polymorphic double
peaks in the respective chromatograms (Supplementary Figures S1 and S2). Subsequent
BLASTn analyses based on the most dominant chromatogram signals revealed that the am-
plified ppdK and sucD sequences were identical to O. tsutsugamushi isolate Karp (Accession
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no. LS398548.1) at 100% and the O. tsutsugamushi strain Wuj/2014 (Accession no. CP044031.1)
at 98.9% identities, respectively.

Figure 1. Bayesian inference phylogenetic tree of O. tsutsugamushi based on the partial sequences
(825 bp) of the TSA47 gene. Posterior probability (PP) is shown on the branches. Only PP > 0.7 are
shown. Newly generated sequences are in bold text, with their accession numbers followed by the
animal host species, location and strain name in parentheses. The reference sequences are labelled
with their accession numbers followed by the host, location and O. tsutsugamushi strain in parentheses
(some only contain partial information). The collapsed branch, consisting of the 23 new sequences
from this study, clustered together with strain UT176 (Accession no. LS398547.1) at 0.98 PP.

3.3.2. Borrelia spp.

The borrelial flaB sequences generated from this study were segregated into two
clusters, one with members of the Lyme disease-related (LD) borreliae and the other with
members of the relapsing fever-related (RF) borreliae (Figure 2), consistent with previous
reports [35–37]. A third cluster whose members did not belong to the former two groups
was also included in the analysis, but none of our specimens clustered with this group. Both
LD and RF borreliae were detected in specimens collected from both study sites (Figure 2).
LD borreliae were only detected in the R. tanezumi R3 mitotype (n = 4) captured in Perak
and Johor. In contrast, the RF borreliae were detected in several species such as the R.
tanezumi R3 mitotype (n = 4), R. tiomanicus (n = 1) and T. glis (n = 1) captured in Perak and
T. glis captured in Johor (n = 1) (Table 3).

A closer observation of the RF borreliae obtained from this study suggested that they
form a sister clade independent of the other RF borreliae strains. This clade includes the
unculturable Borrelia spp. detected in Malaysia (Accession nos. LT671677.1 and LR742718.1)
and Japan (Accession nos. LC170024.1 and LC170030.1) (Figure 2). Conversely, the LD
borreliae topology showed that most of our specimens clustered with Borrelia yangtzensis
and Borrelia valaisiana genospecies group members reported from other Asian countries.

One specimen (UM-SNI15) was clustered with various strains of B. burgdorferi, includ-
ing the B. burgdorferi sensu stricto (s.s.) strains B31 and 20004, isolated from Ixodes spp. ticks
in the USA and France, respectively [38,39]. A novel clpA allele (Allele 310) was obtained
following the Borrelia spp. MLST scheme but the other genes failed to be amplified. The
successfully amplified specimen for MLST was collected from one R. tanezumi R3 mitotype
from Johor (UM-SNI18). It was found to be genetically related to B. yangtzensis (Accession
no. LC572085.1) at 98.63% identity.
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Notably, specimen UM-SNI19 was separately distinct from all other groups, forming a
sister clade next to the other LD borreliae members with less than 0.7 PP. BLASTn analysis
showed that UM-SNI19 has less than 90% identity to both LD and RF borreliae.
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3.3.3. Bartonella spp.

BLAST analyses of the amplified sequences specific to the gltA of Bartonella spp.
revealed that all the specimens were positive for B. phoceensis with 99–100% similarities.
The phylogenetic tree displayed the clustering of the specimens from this study into one
clade together with B. phoceensis representatives from different geographical locations and
separate from the other Bartonella spp. (Figure 3).Trop. Med. Infect. Dis. 2023, 8, x FOR PEER REVIEW  11  of  20 
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(338 bp) of the gltA gene. Posterior probability (PP) is shown on the branches. Only
PP > 0.7 are shown. Newly generated sequences are in bold text, with their accession numbers
followed by the animal host species, location and strain name in parentheses. The reference sequences
are labelled with their accession numbers followed by the host, location and Bartonella spp. strain in
parentheses (some only contain partial information).

4. Discussion

In the present study, small mammals (rodents and tree shrews) trapped in two lo-
cations, Johor and Perak, were studied for the presence of selected vector-borne bacteria
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(O. tsutsugamushi, Borrelia spp., Bartonella spp. and Rickettsia spp.) by the PCR amplification
of pathogen-specific genes. The dominant ecotype in both study sites was the oil palm
plantation. Five rodent (R. tanezumi R3 mitotype, R. exulans, R. tiomanicus, R. argentiventer
and R. tanezumi s.s.) species and one tree shrew (T. glis) species were found in the study
sites. Orientia tsutsugamushi, LD and RF borreliae and B. phoceensis were detected in most of
the small mammals except for R. tanezumi s.s. (n = 1), while Rickettsia spp. was not detected
at all.

Orientia tsutsugamushi has been detected in small mammal species across South-
east Asia (reviewed in [40]), and detection was usually based on bacteria isolation or
serology [41–48]. However, more recent efforts focused on PCR assays targeting the
TSA47 gene for O. tsutsugamushi detection as they are more sensitive and the products
can be sequenced to provide genetic information [49–52]. In the present study, O. tsut-
sugamushi was detected in 12.3% of the small mammals. This detection rate was higher
than in a previous study that detected it in only about 1% of small mammals captured
from eight different states in Malaysia [50]. Another study employing the PCR detection of
O. tsutsugamushi in rodents captured near the Selangau Health Center, Sarawak, Malaysia,
did not yield any positive results [53]. The highest prevalence to our knowledge was the
20% O. tsutsugamushi–positive detection in the liver and spleen of rodents sampled in
Si Racha, Chonburi province, Thailand [47]. Apart from that, most studies resulted in
very low O. tsutsugamushi infection rates ranging from 0.7 to 2.3%, as compared to our
study. Those studies also employed the PCR method, but they were detecting the pathogen
in different tissues (e.g., kidneys) as opposed to spleen, which could explain the differ-
ences in detection rates [46,54–56]. Multiple vector-borne pathogens have been detected
in the spleen as opposed to other tissues, making the spleen the targeted tissue in the
present study [57].

In contrast to our phylogenetic tree in Figure 1, the UT176 strain has been reported
as the Karp sub-genotype with TA763 as a separate genotype based on the TSA56 geno-
typing [49]. In Thailand, eight clades have been known to circulate, viz. Karp, Kato,
Gilliam, TA678, TA686, TA716, TA763 and TH1817 since the 1960s [51,58,59]. In addition,
an epidemiology study revealed that at least five genotypes were circulating in Cambodia
and three in Vietnam [60]. During inspection of the TSA47 sequencing chromatograms,
we noticed double peaks (i.e., two different bases) at some nucleotide positions. However,
those sequences were excluded from the analyses in this study.

A majority of O. tsutsugamushi surveys in small mammals were conducted in Thai-
land. These studies reported the positive detection of O. tsutsugamushi in the Rattus rattus
complex, Bandicota indica, T. glis, R. tanezumi, Rattus andamanensis, R. exulans, Mus cookii,
Rattus nitidus, Bandicota savilei, Berylmys berdmorei, Berylmys bowersi, Leopoldamys edwardsi
and Rattus sp. phylogenetic clade 3, as well as chiggers associated with small mam-
mals [42,46,47,55,56,61]. In Vietnam, O. tsutsugamushi was detected in Rattus flavipectus [61]
and Rattus norvegicus [62] suggesting that rodents and tree shrews are potential competent
reservoirs for O. tsutsugamushi.

A recent study reported the detection of O. tsutsugamushi in chiggers parasitizing
R. rattus and Tupaia sp. in Malaysia, albeit from a different state, Kelantan [63]. The animal
hosts were trapped in areas near the house of a scrub typhus patient, surrounded by mixed
ecologies such as shrubs, coconut, fruit and sugar cane orchards. The study also reported
that two of sixteen pools of Leptotrombidium deliense mites (12.5%) tested positive for
O. tsutsugamushi [63]. Chaisiri et al. [54] reported that O. tsutsugamushi-infected rodents in
Thailand were also obtained from similar ecotypes such as forested and reforestation areas,
fallows, cassava plantations and rice fields. Although the main ecotype covered in our study
was the oil palm plantation, there were rice fields and residential areas near the Perak study
site. Our previous ecological analysis of O. tsutsugamushi infection in the same rodents
analyzed in the current study concluded that neither habitat nor season was significantly
associated with infection, although infection prevalence was highest in oil palm plantations
compared with peripheral habitats [64]. This lack of statistically significant ecological
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effects may be due to the long duration of O. tsutsugamushi infection in small mammals
or high reinfection rates coupled with their movement between adjacent habitats [40]. In
Johor, the O. tsutsugamushi infection of small mammals was positively associated with a
Malaysian endemic vector, Leptotrombidium arenicola, although no significant relationship
between any chigger species and O. tsutsugamushi infection in Perak was apparent [64].

Orientia tsutsugamushi was detected in all small mammal species collected from this
study except for R. tanezumi s.s., and this can be explained as R. tanezumi s.s. has been
shown to be an incidental rodent species in oil palm plantations in Malaysia [65]. The two
synanthropic species, R. exulans and the R. tanezumi R3 mitotype, live in close association
with humans [66–68]. From our findings, both species were found to carry O. tsutsuga-
mushi. The current study also detected O. tsutsugamushi TSA47 sequences similar to the
O. tsutsugamushi isolated from scrub typhus patients [49,69,70]. This was congruent to
studies reporting the infection of O. tsutsugamushi in febrile patients, healthy villagers and
rubber estate workers from rural areas [71–73]. Moreover, polymorphic double peaks were
observed in the chromatograms for ppdK and sucD (Supplementary Figures S1 and S2),
suggesting the presence of more than one O. tsutsugamushi strain in the specimen. A similar
observation was noted in scrub typhus patients; researchers found that some patients could
be simultaneously infected with multiple O. tsutsugamushi strains [30]. Altogether, these
studies imply the potential risk of scrub typhus being contracted by inhabitants or workers
in the agriculture sector such as oil palm plantations, where there could be exposure to
chiggers and small mammal hosts.

The RF borreliae from the present study were found to be closely related to the Borrelia
sp. detected from Japanese sika deer (Cervus nippon) and its associated tick ectoparasite,
Haemaphysalis longicornis) [74–76], a tick species not reported in Malaysia. Several strains
from the present study also clustered with RF borreliae that were previously detected
in Haemaphysalis hystricis collected from a wild boar [35] and a dog [77]. These findings
suggest that both H. longicornis and H. hystricis might harbor closely related borrelial strains.
Our study presented evidence of the detection of RF borreliae strains in Rattus spp. rodents
and T. glis. The majority of RF borreliae strains in this study were detected in Perak.
In Thailand, a previous study reported the detection of RF borreliae in rodents (Rattus
spp., B. indica, Niviventer spp., Leopoldamys sabanus, Crocidura fuliginosa, Mus caroli and M.
cookii) and ticks (Haemaphysalis bandicota, Rhipicephalus sanguineus, Ixodes granulatus and
Dermacentor spp.). They were closely related to Borrelia theileri, Borrelia lonestari and Borrelia
miyamotoi [56,78]. Borrelia crocidurae, the causative agent of tick-borne relapsing fever in
West Africa, was commonly detected in small mammals, suggesting their importance
in the disease epidemiology [79,80]. Small mammals were also reported as potential
reservoirs for B. miyamotoi, another RF borreliae, in different geographical regions including
Malaysia [25,81,82]. The findings from our study add to the evidence of the role of small
mammals, especially the Rattus spp. rodents and T. glis, in the ecology and maintenance of
the identified RF borreliae in the studied areas. B. miyamotoi was previously assumed to be
non-pathogenic until the first human infection was reported in Russia [83]. Although the
currently identified RF borreliae strains have yet to be associated with human infections,
increased surveillance is important as small mammal infestation is widespread in oil palm
plantations, which may lead to eventual pathogen transmission to humans residing or
working within the plantations.

To our knowledge, the data presented here are the first findings of borrelial sequences
related to B. burgdorferi s.s. from rodents in Southeast Asia. Sequences related to B. burgdor-
feri s.s. were previously detected in the blood of a dog from Thailand [84]. Similarly, a
sequence closely related to B. burgdorferi s.s. was detected in one rodent from Perak in
the present study (UM-SNI15). Although the pathogen was detected in only one speci-
men, more surveillance effort is required to establish the presence of B. burgdorferi s.s. in
Malaysia, and to identify the tick vector. While we only managed to sequence the clpA
allele following the Borrelia spp. MLST scheme, a novel clpA allele 310 was assigned to it,
indicating a novel Borrelia strain. The clpA allele 310 was most closely related to clpA allele
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81 that belongs to B. yangtzensis ST360 (Supplementary Figures S3 and S4); these strains
were isolated from the M. caroli rodent and I. granulatus tick in Japan [85]. B. yangtzensis
and the related strains are commonly associated with rodents and tick ectoparasites. From
this study, all strains closely related to B. yangzentsis were detected in Johor. In Malaysia,
B. yangtzensis-related strains were first reported in I. granulatus ticks collected from Sun-
damys muelleri in a recreational forest [36,86]). Furthermore, a previous northern Thailand
study reported the detection of B. yangtzensis in rodents and the associated Ixodes tick
and chigger ectoparasites [56]. B. yangtzensis was also detected in rodents and their tick
ectoparasites in China and Japan [87]. This indicates that B. yangtzensis-related strains are
widespread in East and Southeast Asia. Additionally, the findings from our study included
the R. tanezumi R3 mitotype as another potential host for the pathogen. Since B. yangtzensis
is pathogenic to humans [88], our findings suggest that B. yangtzensis could put residents
of oil palm plantations at risk of infection.

We were unable to ascertain the phylogenetic placement of one of the borrelial se-
quences (UM-SNI19) in this study. BLASTn analyses suggest that UM-SNI19 may be more
closely related to the RF borreliae as the highest query cover and identity scores matched
with members of the RF borreliae strains, even though a portion of the sequences also
exhibited a high percentage of identity to a single member of the LD borreliae, Borrelia
afzelii. Moreover, this strain contains a unique gap in the flaB sequences compared to other
strains in the multiple sequence alignment provided in Supplementary Figure S5. These
findings suggest that the UM-SNI19 Borrelia sp. may be a distinctive genotype based on
the flaB sequences. However, investigation into more genes and more specimens will be
necessary to confirm this observation.

The prevalence of B. phoceensis amongst the small mammals in this study
(4.9%) was relatively low compared to a study by [89] in Sarawak, Malaysia. They found
that approximately 25% of the total examined rodents were B. phoceensis-positive. Their
study also found that the prevalence of B. phoceensis was lower in rural areas, concurring
with our observations. The authors suggest that Bartonella spp. are less prevalent in rural ar-
eas due to the larger foraging habitats, discouraging contact between rodents, thus reducing
Bartonella spp. transmission [89]. The detection of B. phoceensis among small mammals in
Malaysia has previously been reported by Low et al. [90] and Asyikha et al. [91]. Bartonella
phoceensis was found in small mammals captured from urban and rural areas, suggesting
that the pathogen is prevalent in small mammal hosts from various habitats [89–91]. A
separate study reported the detection of Bartonella spp. in the blood of several rodent
species, including Rattus spp. [13], similar to the present study that detected B. phoceensis
in the R. argentiventer and R. tanezumi R3 mitotype. Even though the pathogenicity of B.
phoceensis to humans has not been established, the bacterium has been detected in mites,
lice and ticks associated with rodents [92], suggesting the risk of transmission to humans.
Additionally, four R. tanezumi R3 mitotypes from the Johor and Perak study sites were
found to be co-infected with O. tsutsugamushi and B. phoceensis, compounding the transmis-
sion risk. Nevertheless, this finding is not surprising as rodents are frequently coinfected
with multiple pathogens [45].

5. Conclusions

We report here the presence of O. tsutsugamushi, LD and RF borreliae and B. phoceensis
amongst small mammals commonly found in oil palm plantations in Johor and Perak,
Malaysia. Our findings include a potentially novel Borrelia genotype, and the first report
of a Borrelia sp. closely related to B. burgdorferi s.s. in a rodent in this country. Orientia
tsutsugamushi and B. phoceensis were detected together in four R. tanezumi R3 mitotype
hosts, indicating the simultaneous presence of different pathogens in the rodents. The
findings from this study suggest that O. tsutsugamushi, Borrelia spp. and B. phoceensis are
prevalent among the small mammal populations. The fact that these animals are found in
abundance in the oil palm plantation and can harbor multiple pathogens increases the risk
of potential transmission to other animals, including humans, in the vicinity.
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