Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = Ordovician–Silurian tectonics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 30259 KiB  
Article
Controlling Effects of Complex Fault Systems on the Oil and Gas System of Buried Hills: A Case Study of Beibuwan Basin, China
by Anran Li, Fanghao Xu, Guosheng Xu, Caiwei Fan, Ming Li, Fan Jiang, Xiaojun Xiong, Xichun Zhang and Bing Xie
J. Mar. Sci. Eng. 2025, 13(8), 1472; https://doi.org/10.3390/jmse13081472 - 31 Jul 2025
Viewed by 176
Abstract
Traps are central to petroleum exploration, where hydrocarbons accumulate during migration. Reservoirs are likewise an essential petroleum system element and serve as the primary medium for hydrocarbon storage. The buried hill is a geological formation highly favorable for reservoir development. However, the factors [...] Read more.
Traps are central to petroleum exploration, where hydrocarbons accumulate during migration. Reservoirs are likewise an essential petroleum system element and serve as the primary medium for hydrocarbon storage. The buried hill is a geological formation highly favorable for reservoir development. However, the factors influencing hydrocarbon accumulation in buried hill reservoirs are highly diverse, especially in areas with complex, active fault systems. Fault systems play a dual role, both in the formation of reservoirs and in the migration of hydrocarbons. Therefore, understanding the impact of complex fault systems helps enhance the exploration success rate of buried hill traps and guide drilling deployment. In the Beibuwan Basin in the South China Sea, buried hill traps are key targets for deep-buried hydrocarbon exploration in this faulted basin. The low level of exploration and research in buried hills globally limits the understanding of hydrocarbon accumulation conditions, thereby hindering large-scale hydrocarbon exploration. By using drilling data, logging data, and seismic data, stress fields and tectonic faults were restored. There are two types of buried hills developed in the Beibuwan Basin, which were formed during the Late Ordovician-Silurian period and Permian-Triassic period, respectively. The tectonic genesis of the Late Ordovician-Silurian period buried hills belongs to magma diapirism activity, while the tectonic genesis of the Permian-Triassic period buried hills belongs to reverse thrust activity. The fault systems formed by two periods of tectonic activity were respectively altered into basement buried hills and limestone buried hills. The negative structural inversion controls the distribution and interior stratigraphic framework of the deformed Carboniferous strata in the limestone buried hill. The faults and derived fractures of the Late Ordovician-Silurian period and Permian-Triassic period promoted the diagenesis and erosion of these buried hills. The faults formed after the Permian-Triassic period are not conducive to calcite cementation, thus facilitating the preservation of the reservoir space formed earlier. The control of hydrocarbon accumulation by the fault system is reflected in two aspects: on the one hand, the early to mid-Eocene extensional faulting activity directly controlled the depositional process of lacustrine source rocks; on the other hand, the Late Eocene-Oligocene, which is closest to the hydrocarbon expulsion period, is the most effective fault activity period for connecting Eocene source rocks and buried hill reservoirs. This study contributes to understanding of the role of complex fault activity in the formation of buried hill traps within hydrocarbon-bearing basins. Full article
Show Figures

Figure 1

17 pages, 9011 KiB  
Article
Evolution of Sedimentary Facies of the Ordovician-Silurian Transition and Its Response to the Guangxi Movement in Southern Sichuan Basin, China
by Guoyou Fu, Zhensheng Shi, Meng Zhao, Qun Zhao, Tianqi Zhou, Ling Qi and Pengfei Wang
Appl. Sci. 2025, 15(7), 3559; https://doi.org/10.3390/app15073559 - 25 Mar 2025
Viewed by 395
Abstract
The formation and distribution of sedimentary facies of the Wufeng Formation reflect the evolution of Guangxi Movement and significantly impact shale reservoir quality in southern Sichuan Basin, China. This study characterizes the sedimentary facies and their evolution of Ordovician-Silurian transition shale based on [...] Read more.
The formation and distribution of sedimentary facies of the Wufeng Formation reflect the evolution of Guangxi Movement and significantly impact shale reservoir quality in southern Sichuan Basin, China. This study characterizes the sedimentary facies and their evolution of Ordovician-Silurian transition shale based on detailed core descriptions, full-scale imaging of large slabs, and field emission scanning electron microscopy of argon-ion polished sections. There only exist fine-grained turbidite deposits, hemipelagic deposits, and shallow shoal deposits for the Wufeng shale. Fine-grained turbidite deposits consist primarily of clastic quartz and clay minerals and can be divided into nine subdivisions. Hemipelagic deposits are mainly composed of quartz, detrital carbonate, and clay minerals. Shallow shoal deposits are dominated by clay minerals, dolomite, and calcite, with carbonates primarily of autochthonous origin. The fine-grained turbidite deposits predominantly occur within the Dicellograptus complanatus and D. complexus graptolite biozones, while hemipelagic deposits are confined to the Paraorthograptus pacificus biozone, and shallow shoal deposits are restricted to the Metabolograptus extraordinarius biozone. Formation and distribution of the three sedimentary facies are closely related to the Guangxi Movement. During the strong tectonic compression stage, sufficient sediment supply and intensive volcanic eruption favored the formation of the fine-grained turbidite deposits. Along with waning tectonic activity and reduced terrestrial input, hemipelagic deposits formed and then shallow shoal deposits. Sedimentary facies exert first-order controls on shale reservoir quality, with hemipelagic deposits exhibiting optimal reservoir characteristics. Laboratory analyses reveal that hemipelagic facies possess the highest porosity (3.34–4.15%) and TOC content (2.91–4.10%) due to biogenic quartz enrichment and minimal allochthonous dilution, whereas fine-grained turbidites show degraded properties (porosity: 1.58–3.81%; TOC: 0.15–2.6%) from high-energy siliciclastic influx. Shallow shoal deposits display intermediate values (porosity: 3.92%; TOC: 3.25%), constrained by carbonate cementation. Full article
Show Figures

Figure 1

28 pages, 2517 KiB  
Article
Petrography and Geochemistry of Lower Jurassic Sandstones in the Eastern Junggar Basin: Implications for Provenance and Tectonic Setting
by Furong Li, Zhi Zhang, Can Zhao, Jinqi Han, Jiaye Liu, Yaoyun Guo, Xinyu Tang, Chang Su, Xu Chang and Tong Wu
Minerals 2025, 15(3), 279; https://doi.org/10.3390/min15030279 - 9 Mar 2025
Viewed by 1143
Abstract
The Junggar Basin basement comprises microcontinental blocks amalgamated through successive paleo-oceanic accretion events. Stratigraphic and provenance studies within the basin are crucial for reconstructing its evolution and understanding the closure of paleo-oceanic systems. This study presents an integrated petrographic and geochemical analysis of [...] Read more.
The Junggar Basin basement comprises microcontinental blocks amalgamated through successive paleo-oceanic accretion events. Stratigraphic and provenance studies within the basin are crucial for reconstructing its evolution and understanding the closure of paleo-oceanic systems. This study presents an integrated petrographic and geochemical analysis of the Lower Jurassic Badaowan Formation sandstones in the Dongdaohaizi Depression, located in the eastern Junggar Basin. The results reveal a progressive decrease in lithic fragment content and an increase in quartz content from older to younger strata within the Badaowan Formation, indicating an increase in compositional maturity. Provenance analysis indicates that the sandstones are predominantly derived from tuffaceous rocks, granites, basalts, and minor metamorphic rocks. Heavy mineral assemblages, including zircon, chromian spinel, tourmaline, and garnet, suggest parent rocks consisting primarily of intermediate to acidic igneous rocks, mafic igneous rocks, and metamorphic rocks. Integrated petrographic and geochemical data from the surrounding areas of the Dongdaohaizi Depression confirm that the Badaowan Formation sandstones are primarily sourced from the eastern Kelameili Mountain. The continued uplift and migration of the Kelameili Mountain during the Early Jurassic played a dominant role in shaping the sedimentary provenance. LA-ICP-MS analyses reveal that the rare earth element (REE) concentrations in the Lower Jurassic sandstones are slightly lower than the average REE content of the upper continental crust. The sandstones exhibit weak differentiation between light and heavy REEs, reflecting a depositional environment characterized by anoxic reducing conditions. Geochemical results indicate a tectonic setting dominated by a passive continental margin and continental island arc in the source area. Synthesizing these findings with related studies, we propose that the Kelameili Ocean, as part of the Paleo-Asian Ocean, underwent a complex evolution involving multiple oceanic basins and microcontinental subduction–collision systems. From the Middle Ordovician to Late Silurian, the Kelameili region evolved as a passive continental margin. With the onset of subduction during the Middle Devonian to Early Carboniferous, the eastern Junggar Basin transitioned into a continental island arc system. This tectonic transition was likely driven by episodic or bidirectional subduction of the Kelameili Ocean. Full article
Show Figures

Figure 1

19 pages, 10421 KiB  
Article
Micropore Structure of Deep Shales from the Wufeng–Longmaxi Formations, Southern Sichuan Basin, China: Insight into the Vertical Heterogeneity and Controlling Factors
by Hongzhi Yang, Shengxian Zhao, Bo Li, Yong Liu, Majia Zheng, Jian Zhang, Yongyang Liu, Gaoxiang Wang, Meixuan Yin and Lieyan Cao
Minerals 2023, 13(10), 1347; https://doi.org/10.3390/min13101347 - 23 Oct 2023
Cited by 3 | Viewed by 1396
Abstract
The microscopic pore throat structure of shale reservoir rocks directly affects the reservoir seepage capacity. The occurrence and flow channels of shale gas are mainly micron–nanometer pore throats. Therefore, to clarify the microstructural characteristics and influencing factors of the deep organic-rich shales, a [...] Read more.
The microscopic pore throat structure of shale reservoir rocks directly affects the reservoir seepage capacity. The occurrence and flow channels of shale gas are mainly micron–nanometer pore throats. Therefore, to clarify the microstructural characteristics and influencing factors of the deep organic-rich shales, a study is conducted on the marine shale from the Upper Silurian to Lower Ordovician Wufeng–Longmaxi Formation in the southern Sichuan Basin. Petrographic lithofacies division is carried out in combination with petro-mineralogical characteristics, and a high-resolution scanning electron microscope, low-temperature nitrogen and low-temperature carbon dioxide adsorption, and micron-computed tomography are used to characterize the mineral composition and pore structure qualitatively and quantitatively, upon which the influencing factors of the microstructure are further analyzed. The results show that with the increase in burial depth, the total organic carbon content and siliceous mineral content decrease in the Wufeng formation to Long-11 subsection deep shale, while clay mineral content increases, which corresponds to the change in sedimentary environment from anoxic to oxidizing environment. Unexpectedly, the total pore volume of deep shale does not decrease with the increase in burial depth but increases first and then decreases. Using total organic carbon (TOC), siliceous mineral content showed a good correlation with total pore volume and specific surface area, with correlation coefficients greater than 0.7, confirming the predominant role of these two factors in controlling the pore structure of deep shales. This is mainly because the Longmaxi shale is already in the late diagenetic stage, and organic matter pores are generated in large quantities. Clay minerals have a negative correlation with the total pore volume of shale, and the correlation coefficient is 0.7591. It could be that clay minerals are much more flexible and are easily deformed to block the pores under compaction. In addition, the longitudinal heterogeneity of the deep shale reservoir structure in southern Sichuan is also controlled by the thermal effect of the Emei mantle plume on hydrocarbon generation of organic matter and the development of natural microfractures promoted by multistage tectonic movement. Overall, the complex microstructure in the deep shales of the Longmaxi Formation in the southern Sichuan Basin is jointly controlled by multiple effects, and the results of this research provide strong support for the benefit development of deep shale gas in southern Sichuan Basin. Full article
Show Figures

Figure 1

13 pages, 3249 KiB  
Article
Generation Time and Accumulation of Lower Paleozoic Petroleum in Sichuan and Tarim Basins Determined by Re–Os Isotopic Dating
by Jie Wang, Liangbang Ma, Cheng Tao, Wenhui Liu and Qingwei Dong
Processes 2023, 11(5), 1472; https://doi.org/10.3390/pr11051472 - 12 May 2023
Cited by 1 | Viewed by 1709
Abstract
With the targets of petroleum exploration transferred to the deep and ancient strata, abundant oil and gas resources have been found in Lower Paleozoic and older strata in central and western China. Due to complex evolutionary processes including multiple episodes of hydrocarbon accumulation [...] Read more.
With the targets of petroleum exploration transferred to the deep and ancient strata, abundant oil and gas resources have been found in Lower Paleozoic and older strata in central and western China. Due to complex evolutionary processes including multiple episodes of hydrocarbon accumulation and ubiquitously accompanied by secondary alterations, significant uncertainties remain concerning the generation time and accumulation processes of these revealed petroleum sources. In this paper, relative pure Re and Os elements existing in the asphaltene fractions of Lower Cambrian solid bitumen collected from the Guangyuan area, western Sichuan Basin, SW China and Middle–Lower Ordovician heavy oils in the Aiding area of the Tahe oilfield in the Tarim Basin, NW China were successfully obtained by sample pretreatments, and Re–Os isotopic analysis was subsequently carried out for the dating of these. The Re–Os isotopic composition indicates a generation time of Guangyuan bitumen to between 572 Ma and 559 Ma, corresponding to the late Sinian period of the Neoproterozoic era. By the means of Re–Os isochron aging, initial 187Os/188Os ratios, and carbon isotopic compositions, the Lower Cambrian bitumen is supposed to originate from source rocks of the Doushantuo Formation in the Sinian strata and subsequently migrated into the reservoirs of the Dengying Formation. This previously reserved petroleum was transformed into its present bitumen state by the destruction of reservoirs caused by tectonic uplift. The Re–Os dating results of Middle–Lower Ordovician heavy oil of Tarim Basin suggest that it was formed between 450 Ma to 436 Ma, corresponding to the Late Ordovician–Early Silurian system, and the generated petroleum likely migrate into the Middle–Lower Ordovician karst reservoirs to form early oil reservoirs. With tectonic uplift, these oil reservoirs were degraded and reformed to the heavy-oil reservoirs of today. Full article
Show Figures

Figure 1

17 pages, 15985 KiB  
Article
Provenance of Triassic Xiazijie Fan-Delta in Junggar Basin, Northwestern China: Insights from U-Pb Dating of Detrital Zircons
by Xiaoguang Yuan, Yida Yang, Weifeng Li and Chengshan Wang
Minerals 2023, 13(4), 467; https://doi.org/10.3390/min13040467 - 26 Mar 2023
Cited by 1 | Viewed by 1711
Abstract
Abundant hydrocarbon resources were discovered in the Xiazijie fan-delta in the Triassic Baikouquan Formation in Mahu sag, Junggar Basin. However, the maximum depositional age of Baikouquan Formation and provenance of this fan-delta are still unclear, which would be unfavourable for further hydrocarbon exploration. [...] Read more.
Abundant hydrocarbon resources were discovered in the Xiazijie fan-delta in the Triassic Baikouquan Formation in Mahu sag, Junggar Basin. However, the maximum depositional age of Baikouquan Formation and provenance of this fan-delta are still unclear, which would be unfavourable for further hydrocarbon exploration. In this study, we used detrital zircon U-Pb dating and composition statistics of conglomerate clast and sandstone grain from Baikouquan Formation to constrain the maximum depositional age and provenance of the Xiazijie fan-delta. The results showed that (1) the conglomerate clast compositions of Xiazijie fan-delta mainly consisted of tuff and intermediate-felsic magmatic rocks, and sandstone samples could be classified as litharenite type with the lithic fragments were almost entirely volcanic lithic fragments; (2) the average Qt:F:L values of sandstone samples (M152-S1 and M152-S2) were 26:7:67 and 21:8:71, respectively, and they plotted in the magmatic arc domain in the Qt-F-L ternary diagram, indicating the tectonic setting of source area of Xiazijie fan-delta was magmatic arc; (3) M152-S1 yielded U-Pb ages ranging from 417 Ma to 253 Ma, with a dominant age peak at 313 Ma and two secondary age peaks at 411 Ma and 268 Ma, respectively, while M152-S2 yielded U-Pb ages ranging from 467 Ma to 256 Ma, with a dominant age peak at 307 Ma and two secondary date peaks at 405 Ma and 262 Ma; (4) the mean age of youngest two zircon grains of M152-S1 was 254.8 ± 4.7 Ma, while that of M152-S2 was 257.6 ± 3.8 Ma, suggesting the Baikouquan Formation might be deposited after the Changhsingian to Olenekian; (5) the magmatic rock ages of central West Junggar were distributed mostly between 450–260 Ma, with a dominant age peak at 307 Ma. The ages distribution between magmatic rock of central WJ and detrital zircons of M152-S1 and M152-S2 were similar, indicating the central WJ domain should be the major source area of the Xiazijie fan-delta; (6) the magmatic rock of Hakedun–Hongguleleng area in the Central WJ was characterized by a peak age at 305 Ma, which was consistent with the peak ages of M152-S1 and M152-S2, indicating the Hakedun-Hongguleleng area was likely to be their major source area; and (7) one minor peak age at 411 Ma and another at 405 Ma were obtained from M152-S1 and M152-S2, respectively, and a zircon grain with Middle Ordovician age at 467 Ma was obtained from M152-S2, indicating Late Silurian–Early Devonian Chagankule pluton in the Saier Mountain and Ordovician Honggleleng ophiolite mélange in the Sharburt mountain were the minor source areas. This research has significant implications for stratigraphic correlation in Junggar Basin and hydrocarbon exploration in the Xiazijie fan-delta conglomerate reservoir. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

21 pages, 5871 KiB  
Review
Reservoir Characteristics and Resource Potential of Marine Shale in South China: A Review
by Zhiyao Zhang, Shang Xu, Qiyang Gou and Qiqi Li
Energies 2022, 15(22), 8696; https://doi.org/10.3390/en15228696 - 19 Nov 2022
Cited by 10 | Viewed by 1886
Abstract
Many sets of Paleozoic marine organic-rich shale strata have developed in South China. However, the exploration and development results of these shale formations are quite different. Based on the data of core experiment analysis, drilling, fracturing test of typical wells, the reservoir differences [...] Read more.
Many sets of Paleozoic marine organic-rich shale strata have developed in South China. However, the exploration and development results of these shale formations are quite different. Based on the data of core experiment analysis, drilling, fracturing test of typical wells, the reservoir differences and controlling factors of four sets of typical marine organic-rich shale in southern China are investigated. The four sets of shale have obvious differences in reservoir characteristics. Ordovician–Silurian shale mainly develops siliceous shale, mixed shale and argillaceous shale, with large pore diameter, high porosity, moderate thermal maturity, large pore volume and specific surface area. Cambrian shale mainly develops siliceous shale and mixed shale, with small pore diameter, low porosity, high thermal maturity and smaller pore volume and specific surface area than Ordovician–Silurian shale. Devonian–Carboniferous shale has similar mineral composition to Ordovician–Silurian shale, with small pore diameter, low porosity, moderate thermal maturity and similar pore volume and specific surface area to that of Cambrian shale. Permian shale has very complex mineral composition, with large pore diameter, low to medium thermal maturity and small specific surface area. Mineral composition, thermal maturity and tectonic preservation conditions are the main factors controlling shale reservoir development. Siliceous minerals in Cambrian shale and Ordovician–Silurian shale are mainly of biological origin, which make the support capacity better than Devonian–Carboniferous shale and Permian shale (siliceous minerals are mainly of terrigenous origin and biological origin). Thermal maturity of Ordovician–Silurian shale and Devonian–Carboniferous shale is moderate, with a large number of organic pores developed. Thermal maturity of Cambrian shale and Permian shale is respectively too high and too low, the development of organic pores is significantly weaker than the two sets of shale above. There are obvious differences in tectonic preservation conditions inside and outside the Sichuan Basin. Shale reservoirs inside the Sichuan Basin are characterized by overpressure due to stable tectonic activities, while shale reservoirs outside the Sichuan Basin are generally normal–pressure. Four sets of marine shale in South China all have certain resource potentials, but the exploration and development of shale gas is still constrained by complicated geological conditions, single economic shale formation, high exploration and development costs and other aspects. It is necessary for further research on shale gas accumulation theory, exploration and development technology and related policies to promote the development of China’s shale gas industry. Full article
Show Figures

Figure 1

22 pages, 18899 KiB  
Article
Diagenesis and Reservoir Evolution Model of the Ediacaran Dengying Formation in the Sichuan Basin: Evidence from Laser Ablation U-Pb Dating and In Situ Isotope Analysis
by Zhanfeng Qiao, Jianhua Dong, Zhou Yu, Wenzheng Li, Xiaofang Wang, Lei Jiang and Hairuo Qing
Minerals 2022, 12(11), 1372; https://doi.org/10.3390/min12111372 - 28 Oct 2022
Cited by 4 | Viewed by 2332
Abstract
The microbial dolomite of the Ediacaran Dengying Fm., Sichuan Basin, SW China is endowed with abundant oil and gas resources. A complex diagenetic history greatly complicates the development of such microbial dolomite reservoirs, and has severely restrained hydrocarbon exploration. This study focused on [...] Read more.
The microbial dolomite of the Ediacaran Dengying Fm., Sichuan Basin, SW China is endowed with abundant oil and gas resources. A complex diagenetic history greatly complicates the development of such microbial dolomite reservoirs, and has severely restrained hydrocarbon exploration. This study focused on key field profiles in Eastern Sichuan and aimed to decipher the origin and evolution of dolomites, using novel techniques, including elemental mapping, laser ablation U-Pb dating as well as carbon, oxygen, and strontium isotope analyses. Additionally, we compared the diagenesis and reservoir development model for the Dengying microbial dolomites of the Central Sichuan to other areas, with the aim to provide practical guidance for oil and gas exploration across the entire Sichuan Basin. Our results have shown that the Ediacaran microbial dolomite in Eastern Sichuan experienced four stages of diagenetic modification–specifically: (1) syn-sedimentary dolomitization; (2) penecontemporaneous cementation of fibrous dolomite cement; (3) bladed dolomite and brown-dark very fine crystalline dolomite cementation during the Ordovician; and (4) fine crystalline dolomite and medium-coarse crystalline dolomite cementation during the Silurian-Devonian. Petrology and geochemistry data imply that each diagenetic phase of dolomitization was mainly sourced from marine-dominated fluids. The influence of tectonically related fluids was rarely noted. Significantly, U-Pb ages of these dolomites reveal that the history of dolomite infill to pores within the Eastern Sichuan Basin clearly post-dated that in the Central Sichuan region, resulting in high porosities (6%–11%) that favored hydrocarbon accumulation. This study suggests that the platform margin at the eastern edge of the Xuanhan-Kaijiang paleo-uplift is favorable as the next key exploration target for microbial dolomites in the Sichuan Basin. Full article
(This article belongs to the Special Issue Diagenesis and Geochemistry of Carbonates)
Show Figures

Figure 1

13 pages, 3399 KiB  
Article
Provenance and Stratigraphy of the Upper Carboniferous—Lower Permian Strata of October Revolution Island (Severnaya Zemlya Archipelago): Implications for Geological History of the Russian High Arctic
by Victoria Ershova, Andrei Prokopiev, Daniel Stockli, Daria Zbukova and Anton Shmanyak
Minerals 2022, 12(10), 1325; https://doi.org/10.3390/min12101325 - 20 Oct 2022
Cited by 3 | Viewed by 2413
Abstract
Small depressions across the north-eastern part of October Revolution Island (Severnaya Zemlya archipelago, Kara terrane) are filled with continental terrigenous rocks, dated as Upper Carboniferous–Lower Permian in age based on palynological data. These rocks overlie Ordovician volcaniclastic rocks above a prominent angular unconformity. [...] Read more.
Small depressions across the north-eastern part of October Revolution Island (Severnaya Zemlya archipelago, Kara terrane) are filled with continental terrigenous rocks, dated as Upper Carboniferous–Lower Permian in age based on palynological data. These rocks overlie Ordovician volcaniclastic rocks above a prominent angular unconformity. U-Pb dating of detrital zircons from the Late Carboniferous–Lower Permian rocks reveals that most grains are Ordovician in age, ranging between 475–455 Ma. A subordinate population of Silurian detrital zircons is also present, contributing up to 15% of the dated population, while Precambrian grains mainly yield Neo-Mesoproterozoic ages and do not form prominent peaks. The combined U-Pb and (U-Th)/He ages indicate that most zircon (U-Th)/He ages were reset and average at ca. 317 Ma, suggesting ~6–7 km of Late Carboniferous uplift within the provenance area. This provenance area, mainly comprising Ordovician magmatic and volcanic rocks, was located close to the study area based on the coarse-grained nature of Late Carboniferous–Lower Permian rocks of north-eastern October Revolution Island. Therefore, we propose that Late Paleozoic tectonism significantly affected both the southern margin of the Kara terrane, as previously supposed, and also its north-eastern part. We propose that the Late Paleozoic Uralian suture zone continued to the north-eastern October Revolution Island and was responsible for the significant tectonic uplift of the studied region. This suture zone is now hidden beneath the younger Arctic basins. Full article
Show Figures

Figure 1

31 pages, 8258 KiB  
Article
Mineralogy and Geochemistry of the Upper Ordovician and Lower Silurian Wufeng-Longmaxi Shale on the Yangtze Platform, South China: Implications for Provenance Analysis and Shale Gas Sweet-Spot Interval
by Zhensheng Shi, Shengxian Zhao, Tianqi Zhou, Lihua Ding, Shasha Sun and Feng Cheng
Minerals 2022, 12(10), 1190; https://doi.org/10.3390/min12101190 - 22 Sep 2022
Cited by 20 | Viewed by 2193
Abstract
The sediment provenance influences the formation of the shale gas sweet-spot interval of the Upper Ordovician–Lower Silurian Wufeng–Longmaxi shale from the Yangtze Platform, South China. To identify the provenance, the mineralogy and geochemistry of the shale were investigated. The methods included optical microscopy [...] Read more.
The sediment provenance influences the formation of the shale gas sweet-spot interval of the Upper Ordovician–Lower Silurian Wufeng–Longmaxi shale from the Yangtze Platform, South China. To identify the provenance, the mineralogy and geochemistry of the shale were investigated. The methods included optical microscopy analysis, X-ray diffraction testing, field-emission scanning electron imaging, and major and trace element analysis. The Wufeng–Longmaxi shale is mainly composed of quartz (avg. 39.94%), calcite (avg. 12.29%), dolomite (avg. 11.75%), and clay minerals (avg. 28.31%). The LM1 interval is the shale gas sweet-spot and has the highest contents of total quartz (avg. 62.1%, among which microcrystalline quartz accounts for 52.8% on average) and total organic carbon (avg. 4.6%). The relatively narrow range of TiO2–Zr variation and the close correlation between Th/Sc and Zr/Sc signify no obvious sorting and recycling of the sediment source rocks. Sedimentary sorting has a limited impact on the geochemical features of the shale. The relatively high value of ICV (index of compositional variability) (1.03–3.86) and the low value of CIA (chemical index of alteration values) (50.62–74.48) indicate immature sediment source rocks, probably undergoing weak to moderate chemical weathering. All samples have patterns of moderately enriched light rare-earth elements and flat heavy rare-earth elements with negative Eu anomalies (Eu/Eu* = 0.35–0.92) in chondrite-normalized diagrams. According to Th/Sc, Zr/Sc, La/Th, Zr/Al2O3, TiO2/Zr, Co/Th, SiO2/Al2O3, K2O/Na2O, and La/Sc, it can be inferred that the major sediment source rocks were acidic igneous rocks derived from the active continental margin and continental island arc. A limited terrigenous supply caused by the inactive tectonic setting is an alternative interpretation of the formation of the sweet-spot interval. Full article
(This article belongs to the Special Issue Reservoir and Geochemistry Characteristics of Black Shale)
Show Figures

Figure 1

25 pages, 8856 KiB  
Article
Petrogenesis and Tectonic Implications of Early Paleozoic Magmatism in Awen Gold District, South Section of the Truong Son Orogenic Belt, Laos
by Zhi Shang and Yongqing Chen
Minerals 2022, 12(8), 923; https://doi.org/10.3390/min12080923 - 22 Jul 2022
Cited by 8 | Viewed by 2760
Abstract
The Truong Son orogenic belt (TSOB) is one of the most important orogenic belts in the Indochina block. There are numerous mafic to felsic intrusions in the Early Paleozoic caused by the Tethyan orogeny. However, the tectono-magmatic evolution of the TSOB in the [...] Read more.
The Truong Son orogenic belt (TSOB) is one of the most important orogenic belts in the Indochina block. There are numerous mafic to felsic intrusions in the Early Paleozoic caused by the Tethyan orogeny. However, the tectono-magmatic evolution of the TSOB in the Early Paleozoic is still unclear. In this paper, zircon U-Pb dating, whole-rock geochemistry, and the Sr-Nd isotopic data of the Early Paleozoic magmatic rocks have been systematically investigated to explore the petrogenesis and tectonic significance of these rocks in the TSOB. Based on our new results integrated with previous geological data, four major tectono-magmatic episodes are identified. (1) The Middle Cambrian (~507 Ma) is the early stage of northward subduction of the Tamky-Phuoc Son Ocean. (2) The Early Ordovician to Middle Ordovician (483–461 Ma) is the main subduction stage of the Tamky-Phuoc Son Ocean. The intrusive rock associations imply the closure of the Tamky-Phuoc Son Ocean. (3) The Late Ordovician to Early Silurian (461–438 Ma) is the collision stage of the Kontum massif and Truong Son terrane. (4) The Early Silurian to Late Silurian (438–410 Ma) is the late stage of collision accompanied by slab roll-back. Full article
Show Figures

Figure 1

22 pages, 9741 KiB  
Article
Timing, Provenance, and Tectonic Implications of Ore-Hosting Metasedimentary Rocks in the Giant Liba Gold Deposit, West Qinling Belt, China
by Peng-Cong Zhang, Shan-Shan Li, Bo Liu, Deng-Yang He, Quan-Sheng Cai, Germain Bishikwabo Kaningu and Xin-Chun Sun
Minerals 2022, 12(7), 903; https://doi.org/10.3390/min12070903 - 19 Jul 2022
Cited by 6 | Viewed by 2674
Abstract
The closure time of the Shangdan Ocean is critical for understanding the tectonic evolution of the Proto-Tethys Ocean. However, the proposed closure time was prolonged from Ordovician to Devonian. In the present study, detrital zircon from the metasedimentary rocks of the Liba Group [...] Read more.
The closure time of the Shangdan Ocean is critical for understanding the tectonic evolution of the Proto-Tethys Ocean. However, the proposed closure time was prolonged from Ordovician to Devonian. In the present study, detrital zircon from the metasedimentary rocks of the Liba Group in the West Qinling Belt was analyzed to constrain the closure time of the Shangdan Ocean. The three youngest grains from the Liba Group yield a maximum deposition age of 418 ± 13 Ma, indicating the Middle Devonian deposition. Detrital zircon grains show two main U–Pb age peaks of 810 Ma and 440 Ma with εHf(t) values spanning from −24.3 to +8.8 and −6.3 to +4.1, respectively, suggesting that the sediments of the Liba Group were derived from both the North and South Qinling Belts. The Lower Devonian in the South Qinling Belt shows similar provenance to the Liba Group, whereas sediments from the North Qinling Belt are absent in the Silurian strata of the South Qinling Belt. From Late Silurian to Early Devonian, the tectonic setting changed from subduction to collision. This evidence consistently suggests the disappearance of the Shangdan Ocean. The noticeable decrease in magmatism from 510–420 Ma to 420–390 Ma and the shrinking of εHf(t) values from −15.5–+12.8 to −8.4–+4.2 reveal that the Shangdan Ocean, as the eastmost embranchment of the Proto-Tethys Ocean, was closed at ca. 420 Ma. Full article
Show Figures

Figure 1

20 pages, 13119 KiB  
Article
Mechanism of the Enrichment and Loss Progress of Deep Shale Gas: Evidence from Fracture Veins of the Wufeng–Longmaxi Formations in the Southern Sichuan Basin
by Ran Tan, Ruyue Wang, Yahao Huang, Rui Yang, Hongbo Li and Kuan Lu
Minerals 2022, 12(7), 897; https://doi.org/10.3390/min12070897 - 17 Jul 2022
Cited by 8 | Viewed by 2272
Abstract
Natural fractures caused by tectonic stress in shale can not only improve the seepage capacity of shale, but also become the migration and loss channel of free gas. Calcite, quartz and other minerals in shale fracture veins record the fluid evolution information of [...] Read more.
Natural fractures caused by tectonic stress in shale can not only improve the seepage capacity of shale, but also become the migration and loss channel of free gas. Calcite, quartz and other minerals in shale fracture veins record the fluid evolution information of the shale. Through the analysis of different types of fracture cements in the shale of the Silurian–Ordovician Wufeng–Longmaxi Formations in the southern Sichuan Basin, the effect of different fractures on shale gas construction or destruction was clarified. Geochemical investigations included the diagenetic mineral sequences in the hole–cavity veins, paleo-pressure recovery by Raman quantitative analysis, and the environments of diagenetic fluids traced by rare earth elements (REE) signatures. The density, composition, pressure, and temperature properties of CH4-bearing fluid inclusions were determined by Raman quantitative measurement and thermodynamic simulations to establish the trapping condition of the geo-fluids, and so constrain the periods of gas accumulation. The diagenetic sequences in the fracture veins can be summarized as follows: Cal-I→Qz-II→Cal-III. The Cal-I in the bedding fracture veins crystallized in the late Jurassic (~180 Ma), and originated from hydrothermal origin and diagenetic fluid; the Qz-II veins crystallized in the middle Jurassic (~190 Ma); the Cal-III veins in the high-angle fractures precipitated during the early Eocene (~12 Ma), and derived from atmospheric freshwater leaching. Pore fluid pressure gradually increased. The pressure coefficient of the shale gas reservoir gradually increased to strong overpressure from 160 Ma to 86 Ma. Between 75 Ma and the present day, the pore fluid pressure and the pressure coefficient in the shale reservoirs, having been affected by tectonic activities and strata uplift-erosion, have significantly reduced. Bedding slippage fractures play a constructive role in the enrichment of shale gas, and fracture slip can significantly improve fracture permeability. High-angle shear fractures usually cut through different strata in areas with strong tectonic activity, and destroy the sealing of the shale. The entrapment of primary methane gas inclusions recorded the process of excess reservoir pressure reduction, and indicated the partial loss of shale free gas. Full article
Show Figures

Figure 1

17 pages, 15612 KiB  
Article
Normal Pressure Shale Gas Preservation Conditions in the Transition Zone of the Southeast Basin Margin of Sichuan Basin
by Yisheng Liu, Jineng Jin, Renfang Pan, Xiaotian Li, Zhengping Zhu and Lingling Xu
Water 2022, 14(10), 1562; https://doi.org/10.3390/w14101562 - 12 May 2022
Cited by 2 | Viewed by 2127
Abstract
Shale in the Wufeng Formation of the upper Ordovician and Longmaxi Formation of lower Silurian in the Sichuan Basin and its surrounding area is widespread. Shale gas resources are abundant. Shale gas in the Wufeng Formation and the Longmaxi Formation in the basin [...] Read more.
Shale in the Wufeng Formation of the upper Ordovician and Longmaxi Formation of lower Silurian in the Sichuan Basin and its surrounding area is widespread. Shale gas resources are abundant. Shale gas in the Wufeng Formation and the Longmaxi Formation in the basin has been a major breakthrough. The basin margin transition zone in southeastern Chongqing is in an intense tectonic activity area, which is more complicated and special than the stable stratum in the basin. Therefore, it is necessary to put forward higher requirements for preservation conditions and enrichment pattern evaluation of shale gas. Therefore, in view of the complicated structural pattern of the basin margin transition zone in southeastern Chongqing, the preservation conditions and reservoir forming patterns are analyzed through structural evolution, uplift and denudation, fault development, structural styles, roof and floor conditions, and formation pressure. The results show that the main reason for the formation of normal pressure is the late uplift, denudation and fault development. The pressure coefficient from the basin to the outer layer is changed from overpressure to normal pressure, and structural transformation forms the preservation form of shale gas with narrow and steep residual anticline, wide residual syncline and residual slope. The preservation condition evaluation of normal shale gas should be based on structural factors such as structural evolution, structural style, uplift and denudation degree and fault development degree, with formation pressure coefficient as reference condition, combined with material basic conditions such as roof and floor conditions and formation thickness. The findings of this study can help for better understanding of the “sweet spot” prediction of normal pressure shale gas in complex structural area. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

15 pages, 4673 KiB  
Article
Redetermination of the Zalantun Group in the ARong Qi Area of Da Hinggan Mountains (Northeastern China): Evidence from Petrology, Geochronology and Geochemistry
by Datian Wu, Zhumin Li, Junchao Lv, Jia Xu and Guanglong Shu
Minerals 2022, 12(2), 197; https://doi.org/10.3390/min12020197 - 3 Feb 2022
Cited by 2 | Viewed by 2116
Abstract
The Da Hinggan Mountains are an important area in the tectonic evolution of the Central Asian Orogenic Belt (CAOB), and there are disputes over the closure time of the Paleo-Asian Ocean and the amalgamation spatiotemporal relationship between the Ergun-Hinggan Massif and the Songnun [...] Read more.
The Da Hinggan Mountains are an important area in the tectonic evolution of the Central Asian Orogenic Belt (CAOB), and there are disputes over the closure time of the Paleo-Asian Ocean and the amalgamation spatiotemporal relationship between the Ergun-Hinggan Massif and the Songnun Massif. The geochronology and geochemistry of the Late Cambrian-Late Silurian volcanic rock assemblages in the ARong Qi area at the eastern margin of the Da Hinggan Mountains are studied in this paper. The results suggest that the U-Pb zircon ages of the Late Cambrian, Late Ordovician and Late Silurian volcanic rock assemblages are 507.5 ± 1.0 Ma, 456.2 ± 1.0 Ma, 446.1 ± 0.95 Ma and 423.3 ± 1.4 Ma, respectively. The Late Cambrian-Late Silurian volcanic rocks are quasi-aluminous-peraluminous, belonging to calc-alkaline-shoshonite series, which is rich in HREE but has insignificant europium anomalies. There are abundant large ion lithophile elements (LILE) in the rock, and remarkable Nb, Ta and Ti negative anomalies. The previous data and the current study indicate that a continental margin arc tectonic setting existed in the ARong Qi-Zalantun region during the Early Paleozoic, which is inferred to be the product of the subduction-accretion-amalgamation of the plates along the eastern margin of the Ergun Massif during the Early Paleozoic. Full article
Show Figures

Figure 1

Back to TopTop