Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = ODEP force

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2767 KiB  
Article
Optimizing Optical Dielectrophoretic (ODEP) Performance: Position- and Size-Dependent Droplet Manipulation in an Open-Chamber Oil Medium
by Md Aminul Islam and Sung-Yong Park
Micromachines 2024, 15(1), 119; https://doi.org/10.3390/mi15010119 - 11 Jan 2024
Cited by 1 | Viewed by 2357
Abstract
An optimization study is presented to enhance optical dielectrophoretic (ODEP) performance for effective manipulation of an oil-immersed droplet in the floating electrode optoelectronic tweezers (FEOET) device. This study focuses on understanding how the droplet’s position and size, relative to light illumination, affect the [...] Read more.
An optimization study is presented to enhance optical dielectrophoretic (ODEP) performance for effective manipulation of an oil-immersed droplet in the floating electrode optoelectronic tweezers (FEOET) device. This study focuses on understanding how the droplet’s position and size, relative to light illumination, affect the maximum ODEP force. Numerical simulations identified the characteristic length (Lc) of the electric field as a pivotal factor, representing the location of peak field strength. Utilizing 3D finite element simulations, the ODEP force is calculated through the Maxwell stress tensor by integrating the electric field strength over the droplet’s surface and then analyzed as a function of the droplet’s position and size normalized to Lc. Our findings reveal that the optimal position is xopt= Lc+ r, (with r being the droplet radius), while the optimal droplet size is ropt = 5Lc, maximizing light-induced field perturbation around the droplet. Experimental validations involving the tracking of droplet dynamics corroborated these findings. Especially, a droplet sized at r = 5Lc demonstrated the greatest optical actuation by performing the longest travel distance of 13.5 mm with its highest moving speed of 6.15 mm/s, when it was initially positioned at x0= Lc+ r = 6Lc from the light’s center. These results align well with our simulations, confirming the criticality of both the position (xopt) and size (ropt) for maximizing ODEP force. This study not only provides a deeper understanding of the position- and size-dependent parameters for effective droplet manipulation in FEOET systems, but also advances the development of low-cost, disposable, lab-on-a-chip (LOC) devices for multiplexed biological and biochemical analyses. Full article
(This article belongs to the Collection Micro/Nanoscale Electrokinetics)
Show Figures

Figure 1

14 pages, 1232 KiB  
Article
Repulsive Force for Micro- and Nano-Non-Contact Manipulation
by Amélie Cot, Patrick Rougeot, Sophie Lakard, Michaël Gauthier and Jérôme Dejeu
Appl. Sci. 2023, 13(6), 3886; https://doi.org/10.3390/app13063886 - 18 Mar 2023
Cited by 1 | Viewed by 2141
Abstract
Non-contact positioning of micro-objects using electric fields has been widely explored, based on several physical principles such as electrophoresis, dielectrophoresis (DEP) or optical dielectrophoresis (ODEP), in which the actuation force is induced by an electric charge or an electric dipole placed in an [...] Read more.
Non-contact positioning of micro-objects using electric fields has been widely explored, based on several physical principles such as electrophoresis, dielectrophoresis (DEP) or optical dielectrophoresis (ODEP), in which the actuation force is induced by an electric charge or an electric dipole placed in an electric field. In this paper, we introduce a new way to control charges in non-contact positioning of micro-objects using chemical functionalization (3-aminopropyl) triethoxysilane—APTES) able to localize charges on a substrate and/or on a micro-object. We demonstrate that this functionalization in a liquid with a low ionic strength is able to concentrate a significant amount of electric charges on surfaces generating an electric field over a long distance (about 10 microns), also called a large exclusion zone (EZ). A model is proposed and validated with electrostatic force measurements between substrate and microparticles (diameter up to 40 µm). We demonstrate that the magnitude of the force and the force range decrease rapidly when the ionic strength of the medium increases. Based on the proposed model, we show that this new way to localize charges on micro-objects may be used for non-contact positioning. Full article
(This article belongs to the Special Issue Advanced Polymers Synthesis, Analysis and Applications)
Show Figures

Figure 1

13 pages, 2353 KiB  
Article
Virtual Filter Membranes in a Microfluidic System for Sorting and Separating Size-Based Micro Polystyrene Beads by Illumination Intensity Design in Optically Induced Dielectrophoresis (ODEP)
by Chia-Ming Yang, Ai-Yun Wu, Jian-Cyun Yu, Po-Yu Chu, Chia-Hsun Hsieh and Min-Hsien Wu
Chemosensors 2022, 10(12), 540; https://doi.org/10.3390/chemosensors10120540 - 16 Dec 2022
Cited by 3 | Viewed by 2495
Abstract
In biomedical diagnosis, the efficient separation and purification of specific targets from clinical samples is the desired first step. Herein, the concept of virtual filter membranes based on optically-induced dielectrophoresis (ODEP) manipulation in a microfluidic channel is proposed as a light screening membrane [...] Read more.
In biomedical diagnosis, the efficient separation and purification of specific targets from clinical samples is the desired first step. Herein, the concept of virtual filter membranes based on optically-induced dielectrophoresis (ODEP) manipulation in a microfluidic channel is proposed as a light screening membrane for the separation of polystyrene (PS) microparticles with three different diameters of 15.8, 10.8 and 5.8 µm. The ODEP manipulation velocity of three types of PS microparticles reacted with the color brightness setting was investigated to determine the light intensity to induce an ODEP force higher than the drag force of fluid speed. The color brightness of the light bar in three areas of the light screening membrane was selected as 60%, 70% and 100% to isolate PS microparticles with diameters of 15.8, 10.8 and 5.8 µm, respectively. With a double light bar and a flow rate of 3 µL/min, the recovery rate and isolation purity was improved by 95.1~100% and 94.4~98.6% from the mixture of three types of PS microparticles within 2 min, respectively. This proposed light screening membrane could be a candidate for the separation of small-volume and rare biomedical samples, including circulating tumor cells (CTCs) and bacteria in the blood. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

18 pages, 3570 KiB  
Article
The Utilization of Tunable Transducer Elements Formed by the Manipulation of Magnetic Beads with Different Sizes via Optically Induced Dielectrophoresis (ODEP) for High Signal-to-Noise Ratios (SNRs) and Multiplex Fluorescence-Based Biosensing Applications
by Chia-Ming Yang, Jian-Cyun Yu, Po-Yu Chu, Chia-Hsun Hsieh and Min-Hsien Wu
Biosensors 2022, 12(9), 755; https://doi.org/10.3390/bios12090755 - 14 Sep 2022
Cited by 11 | Viewed by 2565
Abstract
Magnetic beads improve biosensing performance by means of their small volume and controllability by magnetic force. In this study, a new technique composed of optically induced dielectrodphoresis (ODEP) manipulation and image processing was used to enhance the signal-to-noise ratio of the fluorescence for [...] Read more.
Magnetic beads improve biosensing performance by means of their small volume and controllability by magnetic force. In this study, a new technique composed of optically induced dielectrodphoresis (ODEP) manipulation and image processing was used to enhance the signal-to-noise ratio of the fluorescence for stained magnetic beads. According to natural advantages of size-dependent particle isolation by ODEP manipulation, biomarkers in clinical samples can be easily separated by different sizes of magnetic beads with corresponding captured antibodies, and rapidly distinguished by separated location of immunofluorescence. To verify the feasibility of the concept, magnetic beads with three different diameters, including 21.8, 8.7, and 4.2 μm, were easily separated and collected into specific patterns in the defined target zone treated as three dynamic transducer elements to evaluate fluorescence results. In magnetic beads with diameter of 4.2 μm, the lowest signal-to-noise ratio between stained and nonstained magnetic beads was 3.5. With the help of ODEP accumulation and detection threshold setting of 32, the signal-to-noise ratio was increased to 77.4, which makes this method more reliable. With the further optimization of specific antibodies immobilized on different-size magnetic beads in the future, this platform can be a potential candidate for a high-efficiency sensor array in clinical applications. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Figure 1

12 pages, 1943 KiB  
Article
Accurate Micromanipulation of Optically Induced Dielectrophoresis Based on a Data-Driven Kinematic Model
by Gongxin Li, Zhanqiao Ding, Mindong Wang, Zhonggai Zhao, Shuangxi Xie and Fei Liu
Micromachines 2022, 13(7), 985; https://doi.org/10.3390/mi13070985 - 23 Jun 2022
Cited by 2 | Viewed by 1813
Abstract
The precise control method plays a crucial role in improving the accuracy and efficiency of the micromanipulation of optically induced dielectrophoresis (ODEP). However, the unmeasurable nature of the ODEP force is a great challenge for the precise automatic manipulation of ODEP. Here, we [...] Read more.
The precise control method plays a crucial role in improving the accuracy and efficiency of the micromanipulation of optically induced dielectrophoresis (ODEP). However, the unmeasurable nature of the ODEP force is a great challenge for the precise automatic manipulation of ODEP. Here, we propose a data-driven kinematic model to build an automatic control system for the precise manipulation of ODEP. The kinematic model is established by collecting the input displacement of the optical pattern and the output displacements of the manipulated object. Then, the control system based on the model was designed, and its feasibility and control precise were validated by numerical simulations and actual experiments on microsphere manipulation. In addition, the applications of ODEP manipulation in two typical scenarios further demonstrated the feasibility of the designed control system. This work proposes a new method to realize the precise manipulation of ODEP technology by establishing a kinematic model and a control system for micromanipulation, and it also provides a general approach for the improvement of the manipulation accuracy of other optoelectronic tweezers. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

19 pages, 788 KiB  
Article
Numerical Simulation of Optically-Induced Dielectrophoresis Using a Voltage-Transformation-Ratio Model
by Shih-Hsun Hung, Sheng-Chieh Huang and Gwo-Bin Lee
Sensors 2013, 13(2), 1965-1983; https://doi.org/10.3390/s130201965 - 4 Feb 2013
Cited by 12 | Viewed by 7752
Abstract
Optically-induced dielectrophoresis (ODEP) has been extensively used for the manipulation and separation of cells, beads and micro-droplets in microfluidic devices. With this approach, non-uniform electric fields induced by light projected on a photoconductive layer can be used to generate attractive or repulsive forces [...] Read more.
Optically-induced dielectrophoresis (ODEP) has been extensively used for the manipulation and separation of cells, beads and micro-droplets in microfluidic devices. With this approach, non-uniform electric fields induced by light projected on a photoconductive layer can be used to generate attractive or repulsive forces on dielectric materials. Then, moving these light patterns can be used for the manipulation of particles in the microfluidic devices. This study reports on the results from numerical simulation of the ODEP platform using a new model based on a voltage transformation ratio, which takes the effective electrical voltage into consideration. Results showed that the numerical simulation was in reasonably agreement with experimental data for the manipulation of polystyrene beads and emulsion droplets, with a coefficient of variation less than 6.2% (n = 3). The proposed model can be applied to simulations of the ODEP force and may provide a reliable tool for estimating induced dielectrophoretic forces and electric fields, which is crucial for microfluidic applications. Full article
(This article belongs to the Special Issue Microfluidic Devices)
Show Figures

17 pages, 2962 KiB  
Article
Optical Spectrum and Electric Field Waveform Dependent Optically-Induced Dielectrophoretic (ODEP) Micro-Manipulation
by Wenfeng Liang, Shue Wang, Zaili Dong, Gwo-Bin Lee and Wen J. Li
Micromachines 2012, 3(2), 492-508; https://doi.org/10.3390/mi3020492 - 16 May 2012
Cited by 47 | Viewed by 9363
Abstract
In the last seven years, optoelectronic tweezers using optically-induced dielectrophoretic (ODEP) force have been explored experimentally with much success in manipulating micro/nano objects. However, not much has been done in terms of in-depth understanding of the ODEP-based manipulation process or optimizing the input [...] Read more.
In the last seven years, optoelectronic tweezers using optically-induced dielectrophoretic (ODEP) force have been explored experimentally with much success in manipulating micro/nano objects. However, not much has been done in terms of in-depth understanding of the ODEP-based manipulation process or optimizing the input physical parameters to maximize ODEP force. We present our work on analyzing two significant influencing factors in generating ODEP force on a-Si:H based ODEP chips: (1) the waveforms of the AC electric potential across the fluidic medium in an ODEP chip based microfluidic platform; and (2) optical spectrum of the light image projected onto the ODEP chip. Theoretical and simulation results indicate that when square waves are used as the AC electric potential instead of sine waves, ODEP force can double. Moreover, numerical results show that ODEP force increases with increasing optical frequency of the projected light on an ODEP chip following the Fermi-Dirac function, validating that the optically-induced dielectrophoresis force depends strongly on the electron-hole carrier generation phenomena in optoelectronic materials. Qualitative experimental results that validate the numerical results are also presented in this paper. Full article
Show Figures

Figure 1

Back to TopTop