Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = NexBTL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4889 KB  
Article
Engine and Emission Performance of Renewable Fuels in a Small Displacement Turbocharged Diesel Engine
by Ornella Chiavola, Jonas Matijošius, Fulvio Palmieri and Erasmo Recco
Energies 2024, 17(24), 6443; https://doi.org/10.3390/en17246443 - 20 Dec 2024
Cited by 2 | Viewed by 2423
Abstract
A reduction in emissions in transportation is paramount to achieve full compliance with the European Union’s 2050 targets. In this framework, a great boost to the carbon dioxide (CO2) emission of internal combustion engines fueled by petroleum-derived fuels can be obtained [...] Read more.
A reduction in emissions in transportation is paramount to achieve full compliance with the European Union’s 2050 targets. In this framework, a great boost to the carbon dioxide (CO2) emission of internal combustion engines fueled by petroleum-derived fuels can be obtained through the adoption of biomass-derived fuels that can be employed in conventional series production engine vehicles. This paper presents the results of an experimental activity on a two-cylinder turbocharged common rail diesel engine, whose main application is for urban mobility, fueled with renewable fuels: Neste MY Renewable Diesel and Eni HVOlution. Aimed at analyzing the potential employment of renewable fuels as drop-in alternative fuels, the engine performance and emissions were investigated under fixed settings of the injection parameters, in the complete range of the engine speed, at the full pedal position. The comparison with the data from tests in which the engine was fueled with fossil diesel highlighted minimal differences in the performance outcomes, while significant differences were observed in the emissions results. In more detail, there were reduced carbon monoxide (CO) emissions (HVO produced using Ecofining™ technology retained better behavior in relation to HVO produced using the NEXBTL™ technology), advantages in hydrocarbon (HC) and nitrogen oxide (NOx) emissions (HVO from NESTE Oil performed better than HVO from ENI), a decrease in the particle mass and number emissions (HVO from Ecofining™ technology was characterized by a lower particle number and court mean diameter in relation to HVO from the NEXBTL™ technology). The results highlight that an optimization of the engine settings based on the specific properties of each fuel could allow us to take full advantage of these fuels in reducing the environmental impact of cars. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

28 pages, 5263 KB  
Article
A Compact, Self-Sustaining Fuel Cell Auxiliary Power Unit Operated on Diesel Fuel
by Remzi Can Samsun, Matthias Prawitz, Andreas Tschauder, Stefan Weiske, Joachim Pasel and Ralf Peters
Energies 2021, 14(18), 5909; https://doi.org/10.3390/en14185909 - 17 Sep 2021
Cited by 6 | Viewed by 4840
Abstract
A complete fuel cell-based auxiliary power unit in the 7.5 kWe power class utilizing diesel fuel was developed in accordance with the power density and start-up targets defined by the U.S. Department of Energy. The system includes a highly-integrated fuel processor with [...] Read more.
A complete fuel cell-based auxiliary power unit in the 7.5 kWe power class utilizing diesel fuel was developed in accordance with the power density and start-up targets defined by the U.S. Department of Energy. The system includes a highly-integrated fuel processor with multifunctional reactors to facilitate autothermal reforming, the water-gas shift reaction, and catalytic combustion. It was designed with the help of process analyses, on the basis of which two commercial, high-temperature PEFC stacks and balance of plant components were selected. The complete system was packaged, which resulted in a volume of 187.5 l. After achieving a stable and reproducible stack performance based on a modified break-in procedure, a maximum power of 3.3 kWe was demonstrated in a single stack. Despite the strong deviation from design points resulting from a malfunctioning stack, all system functions could be validated. By scaling-up the performance of the functioning stack to the level of two stacks, a power density of 35 We l−1 could be estimated, which is close to the 40 We l−1 target. Furthermore, the start-up time could be reduced to less than 22 min, which exceeds the 30 min target. These results may bring diesel-based fuel cell auxiliary power units a step closer to use in real applications, which is supported by the demonstrated indicators. Full article
(This article belongs to the Special Issue Design, Modeling, and Optimization of Novel Fuel Cell Systems)
Show Figures

Figure 1

14 pages, 31200 KB  
Article
Application of Acoustic Agglomeration Technology to Improve the Removal of Submicron Particles from Vehicle Exhaust
by Inga Garbarienė, Vadimas Dudoitis, Vidmantas Ulevičius, Kristina Plauškaitė-Šukienė, Artūras Kilikevičius, Jonas Matijošius, Alfredas Rimkus, Kristina Kilikevičienė, Darius Vainorius, Algirdas Maknickas, Sergejus Borodinas and Steigvilė Byčenkienė
Symmetry 2021, 13(7), 1200; https://doi.org/10.3390/sym13071200 - 3 Jul 2021
Cited by 12 | Viewed by 3227
Abstract
The natural processes of interactions between aerosol particles in the ambient air through which they agglomerate is a vast area of chamber research and are inherent to many industries and are often inter-connected with transport engineering. Further improvement of symmetric methods for aerosol [...] Read more.
The natural processes of interactions between aerosol particles in the ambient air through which they agglomerate is a vast area of chamber research and are inherent to many industries and are often inter-connected with transport engineering. Further improvement of symmetric methods for aerosol particle number and mass concentration reduction made it possible to create various synergic techniques. The study used a 1.9 TDI diesel internal combustion engine, which was supplied with diesel (D100) and second-generation biofuels (NExBTL100) with the EGR exhaust system on and off. Measurements were performed using a Bruel and Kjær “Type 9727” system for measurement of vibrations, a scanning mobility particle sizer (SMPS) and an original agglomeration chamber. The three modes of particle size distributions were observed in the size range from 10 to 470 nm for both D100 and NExBTL100 fuels with and without the use of the EGR system. The application of 21.3 kHz frequency sound with SPL 144.1 dB changed the NExBTL100 generated aerosol particle number concentration but did not sufficiently affect the concentration of D100 emitted particles. The greatest agglomeration effect (21.7 ± 10.0%) was observed in the range of extremely small NExBTL100 derived particles (10–70 nm) when used in combination with an EGR system. Full article
(This article belongs to the Special Issue Mechanics and Filtering Technology of Waste Particles)
Show Figures

Figure 1

21 pages, 4593 KB  
Review
Insights into Single Droplet Impact Models upon Liquid Films Using Alternative Fuels for Aero-Engines
by Daniela F. S. Ribeiro, André R. R. Silva and Miguel R. O. Panão
Appl. Sci. 2020, 10(19), 6698; https://doi.org/10.3390/app10196698 - 25 Sep 2020
Cited by 18 | Viewed by 4211
Abstract
In aero-engines, the introduction of biofuels is among the best alternatives to fossil fuels, and this change is likely to affect the impact of droplets on interposed surfaces. Under this framework, this work reviews the main morphological hydrodynamic structures occurring upon the impact [...] Read more.
In aero-engines, the introduction of biofuels is among the best alternatives to fossil fuels, and this change is likely to affect the impact of droplets on interposed surfaces. Under this framework, this work reviews the main morphological hydrodynamic structures occurring upon the impact of a liquid droplet on a wetted surface, using jet fuel and biofuel mixtures as alternative fuels. The experiments performed allow investigating the effect of the liquid film thickness on the dynamic behavior of single drop impact, considering the relevancy of these phenomena to the optimization of engine operating parameters. Particular emphasis is given to the occurrence of crown splash, and the morphological differences in the outcomes of drop impact depending on the impact conditions and fluid properties. The four fluids tested included pure water (as reference), 100% Jet A-1, 75%/25%, and 50%/50% mixtures of Jet A-1 and NExBTL (Neste Renewable Diesel)—with the Weber impact number between 103 and 1625; Reynolds values 1411–16,889; and dimensionless film thicknesses of δ = 0.1, 0.5, and 1. The analysis on the secondary atomization for the different fluids evidences the predominance of prompt and crown splash, and jetting for alternative fuels. Finally, besides a systematic review of empirical correlations for the transition to splash, we investigate their universality by extrapolating the validation range to evaluate their ability to predict the outcome of impact accurately. One of the correlations studied show the highest degree of universality for the current experimental conditions, despite its limitation to thin liquid films (δ=0.1). Full article
(This article belongs to the Special Issue Progress in Spray Science and Technology)
Show Figures

Figure 1

18 pages, 5228 KB  
Article
Research on the Combustion, Energy and Emission Parameters of Various Concentration Blends of Hydrotreated Vegetable Oil Biofuel and Diesel Fuel in a Compression-Ignition Engine
by Alfredas Rimkus, Justas Žaglinskis, Saulius Stravinskas, Paulius Rapalis, Jonas Matijošius and Ákos Bereczky
Energies 2019, 12(15), 2978; https://doi.org/10.3390/en12152978 - 1 Aug 2019
Cited by 49 | Viewed by 7156
Abstract
This article presents our research results on the physical-chemical and direct injection diesel engine performance parameters when fueled by pure diesel fuel and retail hydrotreated vegetable oil (HVO). This fuel is called NexBTL by NESTE, and this renewable fuel blends with a diesel [...] Read more.
This article presents our research results on the physical-chemical and direct injection diesel engine performance parameters when fueled by pure diesel fuel and retail hydrotreated vegetable oil (HVO). This fuel is called NexBTL by NESTE, and this renewable fuel blends with a diesel fuel known as Pro Diesel. A wide range of pure diesel fuel and NexBTL100 blends have been tested and analyzed: pure diesel fuel, pure NexBTL, NexBTL10, NexBTL20, NexBTL30, NexBTL40, NexBTL50, NexBTL70 and NexBTL85. The energy, pollution and in-cylinder parameters were analyzed under medium engine speed (n = 2000 and n = 2500 rpm) and brake torque load regimes (30–120 Nm). AVL BOOST software was used to analyze the heat release characteristics. The analysis of brake specific fuel consumption showed controversial results due to the lower density of NexBTL. The mass fuel consumption decreased by up to 4%, and the volumetric consumption increased by up to approximately 6%. At the same time, the brake thermal efficiency mainly increased by approximately 0.5–1.4%. CO, CO2, NOx, HC and SM were analyzed, and the change in CO was negligible when increasing NexBTL in the fuel blend. Higher SM reduction was achieved while increasing the percentage of NexBTL in the blends. Full article
(This article belongs to the Special Issue Biofuels for Internal Combustion Engine)
Show Figures

Figure 1

24 pages, 2076 KB  
Article
Comparative Analysis of Toxic Responses of Organic Extracts from Diesel and Selected Alternative Fuels Engine Emissions in Human Lung BEAS-2B Cells
by Helena Libalova, Pavel Rossner,, Kristyna Vrbova, Tana Brzicova, Jitka Sikorova, Michal Vojtisek-Lom, Vit Beranek, Jiri Klema, Miroslav Ciganek, Jiri Neca, Katerina Pencikova, Miroslav Machala and Jan Topinka
Int. J. Mol. Sci. 2016, 17(11), 1833; https://doi.org/10.3390/ijms17111833 - 3 Nov 2016
Cited by 34 | Viewed by 8379
Abstract
This study used toxicogenomics to identify the complex biological response of human lung BEAS-2B cells treated with organic components of particulate matter in the exhaust of a diesel engine. First, we characterized particles from standard diesel (B0), biodiesel (methylesters of rapeseed oil) in [...] Read more.
This study used toxicogenomics to identify the complex biological response of human lung BEAS-2B cells treated with organic components of particulate matter in the exhaust of a diesel engine. First, we characterized particles from standard diesel (B0), biodiesel (methylesters of rapeseed oil) in its neat form (B100) and 30% by volume blend with diesel fuel (B30), and neat hydrotreated vegetable oil (NEXBTL100). The concentration of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in organic extracts was the lowest for NEXBTL100 and higher for biodiesel. We further analyzed global gene expression changes in BEAS-2B cells following 4 h and 24 h treatment with extracts. The concentrations of 50 µg extract/mL induced a similar molecular response. The common processes induced after 4 h treatment included antioxidant defense, metabolism of xenobiotics and lipids, suppression of pro-apoptotic stimuli, or induction of plasminogen activating cascade; 24 h treatment affected fewer processes, particularly those involved in detoxification of xenobiotics, including PAHs. The majority of distinctively deregulated genes detected after both 4 h and 24 h treatment were induced by NEXBTL100; the deregulated genes included, e.g., those involved in antioxidant defense and cell cycle regulation and proliferation. B100 extract, with the highest PAH concentrations, additionally affected several cell cycle regulatory genes and p38 signaling. Full article
(This article belongs to the Special Issue Molecular Research on Global Climate Change and Atmospheric Pollution)
Show Figures

Graphical abstract

Back to TopTop