Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Near Rectilinear Halo Orbit (NRHO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2530 KB  
Article
Hybrid Optimization Technique for Finding Efficient Earth–Moon Transfer Trajectories
by Lorenzo Casalino, Andrea D’Ottavio, Giorgio Fasano, Janos D. Pintér and Riccardo Roberto
Algorithms 2026, 19(1), 80; https://doi.org/10.3390/a19010080 (registering DOI) - 17 Jan 2026
Abstract
The Lunar Gateway is a planned small space station that will orbit the Moon and serve as a central hub for NASA’s Artemis program to return humans to the lunar surface and to prepare for Mars missions. This work presents a hybrid optimization [...] Read more.
The Lunar Gateway is a planned small space station that will orbit the Moon and serve as a central hub for NASA’s Artemis program to return humans to the lunar surface and to prepare for Mars missions. This work presents a hybrid optimization strategy for designing minimum-fuel transfers from an Earth orbit to a Lunar Near-Rectilinear Halo Orbit. The corresponding optimal control problem—crucial for missions to NASA’s Lunar Gateway—is characterized by a high-dimensional, non-convex solution space due to the multi-body gravitational environment. To tackle this challenge, a two-stage hybrid optimization scheme is employed. The first stage uses a Genetic Algorithm heuristic as a global search strategy, to identify promising feasible trajectory solutions. Subsequently, the initial solution guess (or guesses) produced by GA are improved by a local optimizer based on a Sequential Quadratic Programming method: from a suitable initial guess, SQP rapidly converges to a high-precision feasible solution. The proposed methodology is applied to a representative cargo mission case study, demonstrating its efficiency. Our numerical results confirm that the hybrid optimization strategy can reliably generate mission-grade quality trajectories that satisfy stringent constraints while minimizing propellant consumption. Our analysis validates the combined GA-SQP optimization approach as a robust and efficient tool for space mission design in the cislunar environment. Full article
Show Figures

Figure 1

25 pages, 20024 KB  
Article
Divergence Evaluation Criteria for Lunar Departure Trajectories Under Bi-Circular Restricted Four-Body Problem
by Kohei Takeda and Toshinori Kuwahara
Aerospace 2025, 12(10), 918; https://doi.org/10.3390/aerospace12100918 - 12 Oct 2025
Viewed by 568
Abstract
This study focuses on the nonlinear departure dynamics of spacecraft from the Near Rectilinear Halo Orbit (NRHO) to the outer regions of Selenocentric Space. By carefully selecting the combination of orbital parameters and the order of the evaluation process, it becomes possible to [...] Read more.
This study focuses on the nonlinear departure dynamics of spacecraft from the Near Rectilinear Halo Orbit (NRHO) to the outer regions of Selenocentric Space. By carefully selecting the combination of orbital parameters and the order of the evaluation process, it becomes possible to precisely identify the divergence moment and to reliably classify the subsequent dynamical space. An empirical divergence detection algorithm is proposed by integrating multiple parameters derived from multi-body dynamical models, including gravitational potentials and related quantities. In an applied analysis using this method, it is found that the majority of perturbed trajectories diverge into the outer Earth–Moon Vicinity, while transfers into the inner Earth–Moon Vicinity are relatively limited. Furthermore, transfers to Heliocentric Space are found to be dependent not on the magnitude of the initial perturbation but on the geometric configuration of the Sun, Earth, and Moon during the transfer phase. The investigation of the Sun’s initial phase reveals a rotationally symmetric structure in the perturbation distribution within the Sun–Earth–Moon system, as well as localized conditions under which the destination space varies significantly depending on the initial state. Identifying the divergence moment allows for comparative evaluation of the spacecraft’s nonlinear dynamical state, providing valuable insights for the development of safe and efficient transfer strategies from selenocentric orbits, including those originating from the NRHO. Full article
Show Figures

Figure 1

22 pages, 1910 KB  
Article
Design of Cislunar Navigation Constellation via Orbits with a Resonant Period
by Jiaxin He, Xialan Chen, Peng Tian, Hongwei Han, Zimin Huo and Zhihao Yang
Appl. Sci. 2025, 15(9), 4998; https://doi.org/10.3390/app15094998 - 30 Apr 2025
Viewed by 972
Abstract
With the increasing number of cislunar space missions, real-time and reliable navigation and communication services have become critical. It is necessary to develop the navigation constellations dedicated to cislunar space services. However, there are plenty of orbits in cislunar space providing alternative orbits, [...] Read more.
With the increasing number of cislunar space missions, real-time and reliable navigation and communication services have become critical. It is necessary to develop the navigation constellations dedicated to cislunar space services. However, there are plenty of orbits in cislunar space providing alternative orbits, which makes constellation design a challenging task. To address this, this paper proposes a method for a cislunar navigation constellations configuration design via orbits with resonant periods. First, a periodic orbit catalog for the Earth–Moon system is constructed. Baseline orbits are selected from different orbital families, and all resonant orbits with periods proportional to the baseline orbits are compiled into a resonant orbit set. Second, a Dilution of Precision (DOP) model for navigation performance and a spatial zoning model are established. Then, resonant orbital combinations are screened based on orbital type composition, followed by resonance constellation generation according to predetermined constellation scales. All constellation configurations are categorized by orbital type to obtain a full resonant constellation set. Finally, the proposed method is applied to design optimal configurations providing navigation services for near-Earth and lunar regions. The simulation results shows that constellations combining L2 southern/northern Near-Rectilinear Halo Orbits (NRHOs) with vertical orbits at L4/L5 points deliver the optimal navigation performance in cislunar regions. The relationships between orbital radius and DOP values in target areas, as well as the DOP evolution patterns over constellation periods, are analyzed. The mean DOP values of the optimal constellation in both the near-Earth region and the lunar region increase as the spatial radius expands. Full article
Show Figures

Figure 1

24 pages, 1016 KB  
Article
Orbit Determination of Impulsively Maneuvering Spacecraft Using Adaptive State Noise Compensation
by Huan Ren, Xingyu Zhou and Qingxiang Yang
Symmetry 2025, 17(4), 540; https://doi.org/10.3390/sym17040540 - 1 Apr 2025
Cited by 1 | Viewed by 1142
Abstract
Accurate orbit determination (OD) for spacecraft with impulsive maneuvers in a multi-body system is a challenging task, because the unknown magnitudes and epochs of the maneuvers make dynamic modeling difficult, disrupting the symmetry of state deviations before and after the maneuvers. This paper [...] Read more.
Accurate orbit determination (OD) for spacecraft with impulsive maneuvers in a multi-body system is a challenging task, because the unknown magnitudes and epochs of the maneuvers make dynamic modeling difficult, disrupting the symmetry of state deviations before and after the maneuvers. This paper proposes an Adaptive State Noise Compensation (ASNC) algorithm for the OD of spacecraft with impulsive maneuvering in a three-body dynamics frame, which does not rely on maneuver parameters and can adaptively estimate state noise. Firstly, a decoupled matching factor is developed, which can be used to identify the maneuvering and non-maneuvering epochs of the target spacecraft. Next, based on the matching factor, a position state noise estimation method is presented. Moreover, a method for estimating velocity state noise through inverse mapping of the state transition matrix is formulated, and the compensated state noise is incorporated into the Kalman framework to achieve precise OD of maneuvering spacecraft. Finally, the proposed method is applied to solve the OD problem of a Near Rectilinear Halo Orbit (NRHO) near the Earth–Moon L2 point. Simulation results demonstrated that the proposed method improved accuracy by at least an order of magnitude compared to competitive methods, while effectively restoring the symmetry of the OD system. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Back to TopTop