Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = Nanog overexpression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6213 KiB  
Article
Transmembrane Protease Serine 11B Modulates Lactate Transport Through SLC16A1 in Pancreatic Ductal Adenocarcinoma—A Functional Link to Phenotype Heterogeneity
by Dinara Baiskhanova, Maike Menzel, Claudia Geismann, Christoph Röcken, Eric Beitz, Susanne Sebens, Anna Trauzold and Heiner Schäfer
Int. J. Mol. Sci. 2025, 26(11), 5398; https://doi.org/10.3390/ijms26115398 - 4 Jun 2025
Viewed by 625
Abstract
Tumor cell heterogeneity, e.g., in stroma-rich pancreatic ductal adenocarcinoma (PDAC), includes a differential metabolism of lactate. While being secreted as waste product by most cancer cells characterized by the glycolytic Warburg metabolism, it is utilized by a subset of highly malignant cancer cells [...] Read more.
Tumor cell heterogeneity, e.g., in stroma-rich pancreatic ductal adenocarcinoma (PDAC), includes a differential metabolism of lactate. While being secreted as waste product by most cancer cells characterized by the glycolytic Warburg metabolism, it is utilized by a subset of highly malignant cancer cells running the reverse Warburg metabolism. Key drivers of lactate transport are the carrier proteins SLC16A1 (import/export) and SLC16A3 (export). Expression and function of both carriers are controlled by the chaperone Basigin (BSG), which itself is functionally controlled by the transmembrane protease serine 11B (TMPRSS11B). In this study we explored the impact of TMPRSS11B on the phenotype of PDAC cells under reverse Warburg conditions. Amongst a panel of PDAC cell lines, Panc1 and BxPc3 cells were identified to express TMPRSS11B at a high level, whilst other cell lines such as T3M4 did not. ShRNA-mediated TMPRSS11B knock-down in Panc1 and BxPc3 cells enhanced lactate import through SLC16A1, as shown by GFP/iLACCO1 lactate uptake assay, whereas TMPRSS1B overexpression in T3M4 dampened SLC16A1-driven lactate uptake. Moreover, knock-down and overexpression of TMPRSS11B differentially impacted proliferation and chemoresistance under reverse Warburg conditions in Panc1 or BxPc3 and T3M4 cells, respectively, as well as their stemness properties indicated by altered colony formation rates and expression of the stem cell markers Nanog, Sox2, KLF4 and Oct4. These effects of TMPRSS11B depended on both SLC16A1 and BSG as shown by gene silencing. Immunohistochemical analysis revealed a reciprocal expression of TMPRSS11B and BSG together with SLC16A1 in some areas of tumor tissues from PDAC patients. Those regions exhibiting low or no TMPRSS11B expression but concomitant high expression of SLC16A1 and BSG revealed greater amounts of KLF4. In contrast, other tumor areas exhibiting high expression of TMPRSS11B together with BSG and SLC16A1 were largely negative for KLF4 expression. Thus, the differential expression of TMPRSS11B adds to metabolic heterogeneity in PDAC and its absence supports the reverse Warburg metabolism in PDAC cells by the enhancement of BSG-supported lactate uptake through SLC16A1 and subsequent phenotype alterations towards greater stemness. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Pancreatic Cancer: 2nd Edition)
Show Figures

Figure 1

21 pages, 3593 KiB  
Article
Prognostic Value of SOX2 and NANOG Expression in Recurrent Oral Squamous Cell Carcinoma
by Mohamed Falougy, Clara Taubitz, Mohab Ragab, Akshay Patil, Justus Jensen, Steffen Hoppe, Christiane Kümpers, Julika Ribbat-Idel, Dirk Rades and Samer George Hakim
Cancers 2025, 17(7), 1181; https://doi.org/10.3390/cancers17071181 - 31 Mar 2025
Viewed by 733
Abstract
Background: Recurrent oral squamous cell carcinoma (re-OSCC) poses a serious therapeutic challenge and is linked to poor survival outcomes. SOX2 and NANOG, key transcription factors in cancer stem cell biology, may drive tumor progression and therapy resistance. However, their prognostic value in re-OSCC [...] Read more.
Background: Recurrent oral squamous cell carcinoma (re-OSCC) poses a serious therapeutic challenge and is linked to poor survival outcomes. SOX2 and NANOG, key transcription factors in cancer stem cell biology, may drive tumor progression and therapy resistance. However, their prognostic value in re-OSCC and their relationship to adjuvant therapy remain unclear. Methods: We retrospectively analyzed a single-center cohort of 94 patients with re-OSCC treated with curative intent via (1) surgery alone, (2) surgery plus adjuvant radiotherapy (RT), or (3) surgery plus adjuvant radiochemotherapy (RCT). Tissue microarrays (TMAs) were constructed from matched primary and recurrent tumors and immunohistochemical (IHC) staining for SOX2, and NANOG was quantified using H-scores. Post-recurrence overall survival (prOS) and post-recurrence disease-free survival (prDFS) were evaluated using Kaplan–Meier analysis and Cox proportional hazards models. Results: SOX2 expression and survival: Elevated SOX2 expression (H-score > 14) in re-OSCC was significantly associated with improved prOS (p = 0.013) and prDFS (p = 0.026). Notably, patients who had received adjuvant therapy (particularly RCT) showed higher SOX2 levels in recurrent tumors compared to those treated with surgery alone. NANOG expression and therapy: NANOG expression declined markedly from primary to recurrent tumors (median H-score 42.2 vs. 8.7; p < 0.001). This decline was most pronounced in patients treated with surgery alone. Despite this dynamic change, NANOG expression did not correlate significantly with prOS or prDFS. Other prognostic factors include advanced tumor stage (rT2–rT4) and lymph node involvement (rN+/x)m which remained significant predictors of worse survival in the recurrent setting, regardless of adjuvant therapy. Conclusion: SOX2 overexpression in re-OSCC correlates with better survival, suggesting a unique prognostic role distinct from primary disease. Adjuvant therapy, especially RCT, appears to maintain or elevate SOX2 levels, potentially contributing to improved treatment response. In contrast, although NANOG expression decreases in recurrence, particularly in patients who undergo surgery alone, it does not significantly affect survival outcomes. These findings underscore the importance of context-specific biomarker assessments and provide a rationale for incorporating SOX2 status into personalized treatment strategies for re-OSCC. Full article
(This article belongs to the Special Issue Head and Neck Cancer Metastases)
Show Figures

Figure 1

18 pages, 2345 KiB  
Article
An Analysis of the mRNA Expression of Peripheral-Blood Stem and Progenitor Cell Markers in Pancreatic Neoplastic Disorders
by Krzysztof Dąbkowski, Maciej Tarnowski, Krzysztof Safranow, Maria Dąbkowska, Alicja Kosiorowska, Kamila Pukacka and Teresa Starzyńska
Curr. Issues Mol. Biol. 2025, 47(4), 236; https://doi.org/10.3390/cimb47040236 - 28 Mar 2025
Viewed by 580
Abstract
Background: Our aim was to assess the expression profiles of the messenger RNA (mRNA) expression profiles of stem-cell genes (POU5F1, NANOG) and pancreatic progenitor genes (CK19, HES1, INS, PDX1) in peripheral-blood mononuclear cells (PBMCs) in [...] Read more.
Background: Our aim was to assess the expression profiles of the messenger RNA (mRNA) expression profiles of stem-cell genes (POU5F1, NANOG) and pancreatic progenitor genes (CK19, HES1, INS, PDX1) in peripheral-blood mononuclear cells (PBMCs) in selected neoplastic pancreatic diseases, such as cancer and neuroendocrine tumors, to identify neoplastic disease markers in the pancreas. Methods: In this study, 49 patients diagnosed with pancreatic neoplastic diseases (37 with cancer and 12 with neuroendocrine tumors) and 34 control patients, all of whom were hospitalized at a tertiary center, were enrolled. Venous blood samples were collected from the participants, and RNA was extracted from PBMCs. The mRNA expression levels of six stem-cell and pancreatic progenitor markers— POU5F1 (POU class 5 homeobox 1), NANOG, CK19 (keratin 19), HES1 (HES family bHLH transcription factor 1), INS (insulin), and PDX1 (pancreatic and duodenal homeobox 1)—were quantified via real-time quantitative PCR. The data were statistically analyzed to explore associations between gene-expression levels and various clinical, biochemical, and morphological parameters (including full blood count, Ca 19-9, weight, height, and BMI) via the Kruskal–Wallis test, Mann–Whitney U test, and Spearman rank correlation coefficient. Results: The results revealed that the expression of the gene associated with early stem cells, NANOG (median= 0.002, p = 0.03), as well as the genes encoding insulin INS (median = 0.004, p = 0.02) and CK19 (median 0.0003, p = 0.005), was significantly elevated in patients with pancreatic cancer. However, the gene-expression levels in patients with neuroendocrine tumors did not exhibit statistically significant differences compared to those observed in the control group. Additionally, no significant differences in gene expression were observed among patients at different stages of pancreatic cancer. Furthermore, CK19 overexpression was found to be positively correlated with inflammatory markers, specifically C-reactive protein (CRP) and WBC, in patients with pancreatic cancer. Conclusions: An elevated mRNA expression of specific stem and pancreatic progenitor genes (NANOG, INS, CK19) in PBMCs may serve as a potential markers for pancreatic cancer, reflecting the disease’s interplay with systemic inflammation. Full article
Show Figures

Figure 1

13 pages, 6545 KiB  
Article
Overexpression of miR-192 Inhibits In Vitro Porcine Embryo Development by Inducing Oxidative Stress Damage and Impairing Mitochondrial Function
by Fan He, Mingguo Li, Fan Chen, Rong Zhou, Mengfan Qi, Binbin Fu, Huapeng Zhang, Qingchun Li, Yanzhen Bi and Tao Huang
Animals 2025, 15(1), 46; https://doi.org/10.3390/ani15010046 - 27 Dec 2024
Viewed by 732
Abstract
Early embryonic development relies on intricately regulated gene expression, and miRNAs influence zygotic genome activation (ZGA), cleavage, and cell fate determination through post-transcriptional regulatory mechanisms. miR-192 is expressed in early pig embryos and participates in various reproductive processes. However, its role in pre-implantation [...] Read more.
Early embryonic development relies on intricately regulated gene expression, and miRNAs influence zygotic genome activation (ZGA), cleavage, and cell fate determination through post-transcriptional regulatory mechanisms. miR-192 is expressed in early pig embryos and participates in various reproductive processes. However, its role in pre-implantation pig embryo development remains poorly understood. In this study, we microinjected the miR-192 agonist (miR-192 agomir) into parthenogenetically activated pig embryos to evaluate its effects on early pig embryo development. Our findings indicate that compared to the control group (agomir NC), miR-192 agomir impairs the developmental capacity of parthenogenetic pig embryos to reach the 2-cell, 4-cell, and blastocyst stages. This impairment leads to imbalances in the oxidative–reductive system and abnormalities in mitochondrial function during the 4-cell stage, resulting in the significant accumulation of ROS, notable decreases in the expression of antioxidant enzymes CAT and SOD1 mRNA, reduction in mitochondrial membrane potential, and induction of apoptosis in pig blastocysts. Additionally, the overexpression of miR-192 inhibits the expression of its target genes YY1 and the pluripotency factor NANOG mRNA. In conclusion, this study reveals that the overexpression of miR-192 adversely affects early pig embryo development, providing new evidence for understanding the role miR-192 plays in reproduction. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

19 pages, 3838 KiB  
Article
Suppression of Metastasis of Colon Cancer to Liver in Mouse Models by Pretreatment with Extracellular Vesicles Derived from Nanog-Overexpressing Colon-26 Cancer Cells
by Takuya Henmi, Hideaki Matsuoka, Noa Katayama and Mikako Saito
Int. J. Mol. Sci. 2024, 25(23), 12794; https://doi.org/10.3390/ijms252312794 - 28 Nov 2024
Cited by 2 | Viewed by 1160
Abstract
It has been demonstrated that cancer cells that have survived cancer treatment may be more malignant than the original cancer cells. These cells are considered the main cause of metastasis in prognosis. A Nanog-overexpressing colon-26 (Nanog+colon26) was generated to [...] Read more.
It has been demonstrated that cancer cells that have survived cancer treatment may be more malignant than the original cancer cells. These cells are considered the main cause of metastasis in prognosis. A Nanog-overexpressing colon-26 (Nanog+colon26) was generated to obtain such a malignant cancer cell model, which was confirmed by enhancement of metastatic potential by in vivo tests using mice. Extracellular vesicles (EVs) secreted from Nanog+colon26 cells (Nanog+colon26EVs) were administered to mice three times per week for three weeks. Subsequently, Nanog+colon26 cells were administered, and metastatic colonies were analyzed two weeks later. The results demonstrated that the administration of EVs suppressed metastasis. Nanog+colon26EVs enhanced phagocytic activity and M1 marker CD80 of a macrophage cell line J774.1. These suggested the enforcement of tumor-suppressive properties of macrophages and their contribution to the in vivo suppression of metastasis. Small RNA sequencing was conducted to identify Nanog-dependent miRNAs that exhibited significant changes (Fc ≥ 1.5 or Fc ≤ 1/1.5; p < 0.05) in Nanog+colon26EVs relative to colon26EVs. Nine miRNAs (up-regulated: four, down-regulated: five) were identified, and 623 genes were predicted to be their target genes. Of the 623 genes identified, nine genes were predicted to be highly relevant to macrophage functions such as phagocytosis. Full article
(This article belongs to the Special Issue The Molecular Basis of Extracellular Vesicles in Health and Diseases)
Show Figures

Figure 1

14 pages, 6040 KiB  
Article
LINE-1-Induced Retrotransposition Affects Early Preimplantation Embryo DNA Integrity and Pluripotency
by Prodromos Sakaloglou, Leandros Lazaros, Ioanna Bouba, Sofia Markoula, Athanasios Zikopoulos, Eirini Drakaki, Ismini Anagnostaki, Anastasios Potiris, Sofoklis Stavros, Angeliki Gerede, Ekaterini Domali, Peter Drakakis, Theodoros Tzavaras and Ioannis Georgiou
Int. J. Mol. Sci. 2024, 25(23), 12722; https://doi.org/10.3390/ijms252312722 - 27 Nov 2024
Viewed by 1282
Abstract
Retrotransposable elements are implicated in genome rearrangements and gene expression alterations that result in various human disorders. In the current study, we sought to investigate the potential effects of long interspersed elements-1 (LINE-1) overexpression on the integrity and methylation of DNA and on [...] Read more.
Retrotransposable elements are implicated in genome rearrangements and gene expression alterations that result in various human disorders. In the current study, we sought to investigate the potential effects of long interspersed elements-1 (LINE-1) overexpression on the integrity and methylation of DNA and on the expression of three major pluripotency factors (OCT4, SOX2, NANOG) during the preimplantation stages of human embryo development. Human MI oocytes were matured in vitro to MII and transfected through intracytoplasmic sperm injection (ICSI) either with an EGFP vector carrying a cloned active human LINE-1 retroelement or with the same EGFP vector without insert as control. The occurrence of retrotransposition events was screened by fluorescent microscopy. The in vitro preimplantation development as well as the methylation, pluripotency, and DNA double-strand breaks (DSBs) of the transfected embryos were examined. LINE-1 retrotransposons gave rise to new retrotransposition events in the transfected embryos. LINE-1 injected embryos were characterized by accelerated asymmetrical cell division, multiple cellular fragments, cleavage arrest, and degeneration. Early OCT4 expression remained unaltered, but cleavage arrest and a high fragmentation rate hindered the expression of SOX2/NANOG at the morula stage. Increased DNA DSBs were observed in cleavage-stage blastomeres, while no methylation changes were detected before the cleavage arrest. Our data provide evidence that LINE-1 retrotransposition in human preimplantation embryos may induce DNA DSBs, while at the same time, it appears to interfere with the expression patterns of pluripotency factors. The morphological, structural, and cleavage abnormalities of the transfected embryos show that aberrant retroelement expression may negatively affect human embryo development. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 1596 KiB  
Article
Hedgehog Pathway Is a Regulator of Stemness in HER2-Positive Trastuzumab-Resistant Breast Cancer
by Idris Er and Asiye Busra Boz Er
Int. J. Mol. Sci. 2024, 25(22), 12102; https://doi.org/10.3390/ijms252212102 - 11 Nov 2024
Cited by 3 | Viewed by 1293
Abstract
HER2 overexpression occurs in 20–30% of breast cancers and is associated with poor prognosis. Trastuzumab is a standard treatment for HER2-positive breast cancer; however, resistance develops in approximately 50% of patients within a year. The Hedgehog (Hh) signalling pathway, known for its role [...] Read more.
HER2 overexpression occurs in 20–30% of breast cancers and is associated with poor prognosis. Trastuzumab is a standard treatment for HER2-positive breast cancer; however, resistance develops in approximately 50% of patients within a year. The Hedgehog (Hh) signalling pathway, known for its role in maintaining stemness in various cancers, may contribute to trastuzumab resistance in HER2-positive breast cancer. This study aimed to investigate the role of Hedgehog signalling in maintaining stemness and contributing to trastuzumab resistance in HER2-positive breast cancer cell lines. Trastuzumab-resistant HER2-positive breast cancer cell lines, SKBR3 and HCC1954, were developed through continuous trastuzumab exposure. Cells were treated with GANT61 (Hh inhibitor, IC50:10 µM) or SAG21K (Hh activator, IC50:100 nM) for 24 h to evaluate the Hedgehog signalling response. Stemness marker expression (Nanog, Sox2, Bmi1, Oct4) was measured using qRT-PCR. The combination index (CI) of GANT61 with trastuzumab was calculated using CompuSyn software (version 1.0) to identify synergistic doses (CI < 1). The synergistic concentrations’ impact on stemness markers was assessed. Data were analysed using two-way ANOVA and Tukey’s post hoc test (p < 0.05). Trastuzumab-resistant cells exhibited increased Hedgehog signalling activity. Treatment with GANT61 significantly downregulated stemness marker expression, while SAG21K treatment led to their upregulation in both SKBR3-R and HCC1954-R cells. The combination of GANT61 and trastuzumab demonstrated a synergistic effect, markedly reducing the expression of stemness markers. These findings indicate that Hedgehog signalling plays a pivotal role in maintaining stemness in trastuzumab-resistant cells, and that the inhibition of this pathway may prevent tumour progression. Hedgehog signalling is crucial in regulating stemness in trastuzumab-resistant HER2-positive breast cancer. Targeting this pathway could overcome resistance and enhance trastuzumab efficacy. Further studies should explore the clinical potential of Hedgehog inhibitors in combination therapies. Full article
(This article belongs to the Special Issue Hormone Receptors and Signaling in Breast Cancer)
Show Figures

Figure 1

10 pages, 3003 KiB  
Article
Integrin β3 Reprogramming Stemness in HER2-Positive Breast Cancer Cell Lines
by Asiye Busra Boz Er
Biology 2024, 13(6), 429; https://doi.org/10.3390/biology13060429 - 11 Jun 2024
Cited by 7 | Viewed by 2248
Abstract
HER2-positive breast cancer, characterised by overexpressed HER2 levels, is associated with aggressive tumour behaviour and poor prognosis. Trastuzumab is a standard treatment; however, approximately 50% of patients develop resistance within one year. This study investigates the role of ITGβ3 in promoting stemness and [...] Read more.
HER2-positive breast cancer, characterised by overexpressed HER2 levels, is associated with aggressive tumour behaviour and poor prognosis. Trastuzumab is a standard treatment; however, approximately 50% of patients develop resistance within one year. This study investigates the role of ITGβ3 in promoting stemness and resistance in HER2-positive breast cancer cell lines (HCC1954 and SKBR3). The findings demonstrate that chronic exposure to trastuzumab upregulates stem cell markers (SOX2, OCT4, KLF4, NANOG, SALL4, ALDH, BMI1, Nestin, Musashi 1, TIM3, CXCR4). Given the documented role of RGD-binding integrins in drug resistance and stemness, we specifically investigated their impact on resistant cells. Overexpression of ITGβ3 enhances the expression of these stem cell markers, while silencing ITGβ3 reduces their expression, suggesting a major role for ITGβ3 in maintaining stemness and resistance. Further analysis reveals that ITGβ3 activates the Notch signalling pathway, known for regulating stem cell maintenance. The combination of trastuzumab and cilengitide, an integrin inhibitor, significantly decreases the expression of stem cell markers in resistant cells, indicating a potential therapeutic strategy to overcome resistance. These results identify the importance of ITGβ3 in mediating stemness and trastuzumab resistance through Notch signalling in HER2-positive breast cancer, offering new approaches for enhancing treatment efficacy. Full article
(This article belongs to the Special Issue Cancer Stem Cells Biology)
Show Figures

Figure 1

19 pages, 4025 KiB  
Article
Oncogenic Role of SATB2 In Vitro: Regulator of Pluripotency, Self-Renewal, and Epithelial–Mesenchymal Transition in Prostate Cancer
by Wei Yu, Rashmi Srivastava, Shivam Srivastava, Yiming Ma, Sharmila Shankar and Rakesh K. Srivastava
Cells 2024, 13(11), 962; https://doi.org/10.3390/cells13110962 - 3 Jun 2024
Cited by 1 | Viewed by 1835
Abstract
Special AT-rich sequence binding protein-2 (SATB2) is a nuclear matrix protein that binds to nuclear attachment regions and is involved in chromatin remodeling and transcription regulation. In stem cells, it regulates the expression of genes required for maintaining pluripotency and self-renewal and epithelial–mesenchymal [...] Read more.
Special AT-rich sequence binding protein-2 (SATB2) is a nuclear matrix protein that binds to nuclear attachment regions and is involved in chromatin remodeling and transcription regulation. In stem cells, it regulates the expression of genes required for maintaining pluripotency and self-renewal and epithelial–mesenchymal transition (EMT). In this study, we examined the oncogenic role of SATB2 in prostate cancer and assessed whether overexpression of SATB2 in human normal prostate epithelial cells (PrECs) induces properties of cancer stem cells (CSCs). The results demonstrate that SATB2 is highly expressed in prostate cancer cell lines and CSCs, but not in PrECs. Overexpression of SATB2 in PrECs induces cellular transformation which was evident by the formation of colonies in soft agar and spheroids in suspension. Overexpression of SATB2 in PrECs also resulted in induction of stem cell markers (CD44 and CD133), pluripotency-maintaining transcription factors (cMYC, OCT4, SOX2, KLF4, and NANOG), CADHERIN switch, and EMT-related transcription factors. Chromatin immunoprecipitation assay demonstrated that SATB2 can directly bind to promoters of BCL-2, BSP, NANOG, MYC, XIAP, KLF4, and HOXA2, suggesting SATB2 is capable of directly regulating pluripotency/self-renewal, cell survival, and proliferation. Since prostate CSCs play a crucial role in cancer initiation, progression, and metastasis, we also examined the effects of SATB2 knockdown on stemness. SATB2 knockdown in prostate CSCs inhibited spheroid formation, cell viability, colony formation, cell motility, migration, and invasion compared to their scrambled control groups. SATB2 knockdown in CSCs also upregulated the expression of E-CADHERIN and inhibited the expression of N-CADHERIN, SNAIL, SLUG, and ZEB1. The expression of SATB2 was significantly higher in prostate adenocarcinoma compared to normal tissues. Overall, our data suggest that SATB2 acts as an oncogenic factor where it is capable of inducing malignant changes in PrECs by inducing CSC characteristics. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

24 pages, 9421 KiB  
Article
MiR-290 Family Maintains Pluripotency and Self-Renewal by Regulating MAPK Signaling Pathway in Intermediate Pluripotent Stem Cells
by Yueshi Liu, Xiangnan Li, Xiaozhuang Ma, Qiankun Du, Jiemin Wang and Haiquan Yu
Int. J. Mol. Sci. 2024, 25(5), 2681; https://doi.org/10.3390/ijms25052681 - 26 Feb 2024
Cited by 1 | Viewed by 2001
Abstract
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are derived from pre- and post-implantation embryos, representing the initial “naïve” and final “primed” states of pluripotency, respectively. In this study, novel reprogrammed pluripotent stem cells (rPSCs) were induced from mouse EpiSCs using [...] Read more.
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are derived from pre- and post-implantation embryos, representing the initial “naïve” and final “primed” states of pluripotency, respectively. In this study, novel reprogrammed pluripotent stem cells (rPSCs) were induced from mouse EpiSCs using a chemically defined medium containing mouse LIF, BMP4, CHIR99021, XAV939, and SB203580. The rPSCs exhibited domed clones and expressed key pluripotency genes, with both X chromosomes active in female cells. Furthermore, rPSCs differentiated into cells of all three germ layers in vivo through teratoma formation. Regarding epigenetic modifications, the DNA methylation of Oct4, Sox2, and Nanog promoter regions and the mRNA levels of Dnmt3a, Dnmt3b, and Dnmt1 were reduced in rPSCs compared with EpiSCs. However, the miR-290 family was significantly upregulated in rPSCs. After removing SB203580, an inhibitor of the p38 MAPK pathway, the cell colonies changed from domed to flat, with a significant decrease in the expression of pluripotency genes and the miR-290 family. Conversely, overexpression of pri-miR-290 reversed these changes. In addition, Map2k6 was identified as a direct target gene of miR-291b-3p, indicating that the miR-290 family maintains pluripotency and self-renewal in rPSCs by regulating the MAPK signaling pathway. Full article
(This article belongs to the Topic Pluripotent Stem Cells)
Show Figures

Figure 1

15 pages, 1443 KiB  
Review
“Pass the Genetic Scalpel”: A Comprehensive Review of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in Urological Cancers
by Arthur Yim, Matthew Alberto, Marco Herold, Dixon Woon, Joseph Ischia and Damien Bolton
Soc. Int. Urol. J. 2024, 5(1), 16-30; https://doi.org/10.3390/siuj5010006 - 13 Feb 2024
Cited by 1 | Viewed by 2174
Abstract
Introduction: Urological cancers account for a significant portion of cancer diagnoses and mortality rates worldwide. The traditional treatment options of surgery and chemoradiation can have significant morbidity and become ineffective in refractory disease. The discovery of the CRISPR system has opened up [...] Read more.
Introduction: Urological cancers account for a significant portion of cancer diagnoses and mortality rates worldwide. The traditional treatment options of surgery and chemoradiation can have significant morbidity and become ineffective in refractory disease. The discovery of the CRISPR system has opened up new avenues for cancer research by targeting specific genes or mutations that play a role in cancer development and progression. In this review, we summarise the current state of research on CRISPR in urology and discuss its potential for improving the diagnosis and treatment of urological cancers. Methods: A comprehensive literature search was conducted on databases including PubMed, Embase, and Cochrane Library. The keywords included CRISPR and urology OR prostate OR renal OR bladder OR testicular cancer. Results: CRISPR has been used extensively in a preclinical setting to identify and target genes in prostate cancer, including AR, NANOG, ERβ, TP53, PTEN, and PD-1. Targeting PRRX2 and PTEN has also been shown to overcome enzalutamide and docetaxel resistance in vitro. In bladder cancer, CBP, p300, hTERT, lncRNA SNGH3, SMAD7e, and FOXA1 have been targeted, with HNRNPU knockout demonstrating tumour inhibition, increased apoptosis and enhanced cisplatin sensitivity both in vitro and in vivo. Renal cancer has seen CRISPR target VHL, TWIST1, PTEN, and CD70, with the first in-human clinical trial of Anti-CD70 CAR T cell therapy showing an excellent safety profile and durable oncological results. Lastly, testicular cancer modelling has utilised CRISPR to knockout FLNA, ASH2L, HMGB4, CD24, and VIRMA, with NAE1 found to be over-expressed in cisplatin-resistant germ cell colonies. Conclusions: CRISPR is a cutting-edge technology that has been used extensively in the pre-clinical setting to identify new genetic targets, enhance drug sensitivity, and inhibit cancer progression in animal models. Although CAR T cell therapy has shown promising results in RCC, CRISPR-based therapeutics are far from mainstream, with further studies needed across all urological malignancies. Full article
Show Figures

Figure 1

22 pages, 5762 KiB  
Article
Comparative Study of Metastasis Suppression Effects of Extracellular Vesicles Derived from Anaplastic Cell Lines, Nanog-Overexpressing Melanoma, and Induced Pluripotent Stem Cells
by Celine Swee May Khoo, Takuya Henmi and Mikako Saito
Int. J. Mol. Sci. 2023, 24(24), 17206; https://doi.org/10.3390/ijms242417206 - 6 Dec 2023
Cited by 3 | Viewed by 2243
Abstract
Previous studies have demonstrated that extracellular vesicles (EVs) derived from an anaplastic mouse melanoma cell line made using Nanog overexpression of F10 (Nanog+F10) suppressed the metastasis of Nanog+F10. Here, an induced pluripotent stem (iPS) cell line was focused [...] Read more.
Previous studies have demonstrated that extracellular vesicles (EVs) derived from an anaplastic mouse melanoma cell line made using Nanog overexpression of F10 (Nanog+F10) suppressed the metastasis of Nanog+F10. Here, an induced pluripotent stem (iPS) cell line was focused as a more anaplastic cell line, potentially producing EVs with higher metastasis-suppressive effects. The EVs were introduced into the tail vein nine times before introducing Nanog+F10 cells. Two weeks later, the liver and lung were resected and metastatic colonies were quantified. The involvement of macrophages (invasion inhibiting ability, phagocytic activity) and cytotoxic T cells (cytotoxicity) was evaluated using J774.1 and CTLL-2 cell lines. iPS EVs showed similar level effects to Nanog+F10 EVs in every item relevant to metastasis suppression. Differential expression analysis of miRNAs in EVs and functional network database analysis revealed that dominant regulatory miRNAs were predicted. The candidate hub genes most highly associated with the metastasis suppression mechanism were predicted as six genes, including Trp53 and Hif1a, for Nanog+F10 EVs and ten genes, including Ins1 and Kitl, for iPS EVs. Regarding the mechanism, Nanog+F10 EVs and iPS EVs were very different. This suggests synergistic effect when used together as metastasis preventive vaccine. Full article
(This article belongs to the Special Issue State-of-the-Art Cancer Immunotherapies)
Show Figures

Graphical abstract

18 pages, 5849 KiB  
Article
Metformin Suppresses Stemness of Non-Small-Cell Lung Cancer Induced by Paclitaxel through FOXO3a
by Zhimin Tang, Yilan Zhang, Zhengyi Yu and Zhijun Luo
Int. J. Mol. Sci. 2023, 24(23), 16611; https://doi.org/10.3390/ijms242316611 - 22 Nov 2023
Cited by 6 | Viewed by 2617
Abstract
Cancer stem cells (CSCs) play a pivotal role in drug resistance and metastasis. Among the key players, Forkhead box O3a (FOXO3a) acts as a tumor suppressor. This study aimed to unravel the role of FOXO3a in mediating the inhibitory effect of metformin on [...] Read more.
Cancer stem cells (CSCs) play a pivotal role in drug resistance and metastasis. Among the key players, Forkhead box O3a (FOXO3a) acts as a tumor suppressor. This study aimed to unravel the role of FOXO3a in mediating the inhibitory effect of metformin on cancer stemness derived from paclitaxel (PTX)-resistant non-small-cell lung cancer (NSCLC) cells. We showed that CSC-like features were acquired by the chronic induction of resistance to PTX, concurrently with inactivation of FOXO3a. In line with this, knockdown of FOXO3a in PTX-sensitive cells led to changes toward stemness, while overexpression of FOXO3a in PTX-resistant cells mitigated stemness in vitro and remarkably curbed the tumorigenesis of NSCLC/PTX cells in vivo. Furthermore, metformin suppressed the self-renewal ability of PTX-resistant cells, reduced the expression of stemness-related markers (c-MYC, Oct4, Nanog and Notch), and upregulated FOXO3a, events concomitant with the activation of AMP-activated protein kinase (AMPK). All these changes were recapitulated by silencing FOXO3a in PTX-sensitive cells. Intriguingly, the introduction of the AMPK dominant negative mutant offset the inhibitory effect of metformin on the stemness of PTX-resistant cells. In addition, FOXO3a levels were elevated by the treatment of PTX-resistant cells with MK2206 (an Akt inhibitor) and U0126 (a MEK inhibitor). Collectively, our findings indicate that metformin exerts its effect on FOXO3a through the activation of AMPK and the inhibition of protein kinase B (Akt) and MAPK/extracellular signal-regulated kinase (MEK), culminating in the suppression of stemness in paclitaxel-resistant NSCLC cells. Full article
(This article belongs to the Special Issue Natural Products as Source of Molecules for Drugs and Therapy)
Show Figures

Figure 1

13 pages, 2546 KiB  
Article
TRRAP Enhances Cancer Stem Cell Characteristics by Regulating NANOG Protein Stability in Colon Cancer Cells
by Kyung-Taek Kang, Min-Joo Shin, Hye-Ji Moon, Kyung-Un Choi, Dong-Soo Suh and Jae-Ho Kim
Int. J. Mol. Sci. 2023, 24(7), 6260; https://doi.org/10.3390/ijms24076260 - 26 Mar 2023
Cited by 12 | Viewed by 3010
Abstract
NANOG, a stemness-associated transcription factor, is highly expressed in many cancers and plays a critical role in regulating tumorigenicity. Transformation/transcription domain-associated protein (TRRAP) has been reported to stimulate the tumorigenic potential of cancer cells and induce the gene transcription of NANOG. This study [...] Read more.
NANOG, a stemness-associated transcription factor, is highly expressed in many cancers and plays a critical role in regulating tumorigenicity. Transformation/transcription domain-associated protein (TRRAP) has been reported to stimulate the tumorigenic potential of cancer cells and induce the gene transcription of NANOG. This study aimed to investigate the role of the TRRAP-NANOG signaling pathway in the tumorigenicity of cancer stem cells. We found that TRRAP overexpression specifically increases NANOG protein stability by interfering with NANOG ubiquitination mediated by FBXW8, an E3 ubiquitin ligase. Mapping of NANOG-binding sites using deletion mutants of TRRAP revealed that a domain of TRRAP (amino acids 1898–2400) is responsible for binding to NANOG and that the overexpression of this TRRAP domain abrogated the FBXW8-mediated ubiquitination of NANOG. TRRAP knockdown decreased the expression of CD44, a cancer stem cell marker, and increased the expression of P53, a tumor suppressor gene, in HCT-15 colon cancer cells. TRRAP depletion attenuated spheroid-forming ability and cisplatin resistance in HCT-15 cells, which could be rescued by NANOG overexpression. Furthermore, TRRAP knockdown significantly reduced tumor growth in a murine xenograft transplantation model, which could be reversed by NANOG overexpression. Together, these results suggest that TRRAP plays a pivotal role in the regulation of the tumorigenic potential of colon cancer cells by modulating NANOG protein stability. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

15 pages, 2513 KiB  
Article
Effect of ZEB1 Associated with microRNAs on Tumor Stem Cells in Head and Neck Cancer
by Letícia Antunes Muniz Ferreira, Maria Antonia dos Santos Bezerra, Rosa Sayoko Kawasaki-Oyama, Glaucia Maria de Mendonça Fernandes, Márcia Maria Urbanin Castanhole-Nunes, Vilson Serafim Junior, Rogério Moraes Castilho, Érika Cristina Pavarino, José Victor Maniglia and Eny Maria Goloni-Bertollo
Int. J. Mol. Sci. 2023, 24(6), 5916; https://doi.org/10.3390/ijms24065916 - 21 Mar 2023
Cited by 3 | Viewed by 2629
Abstract
Cancer biologists have focused on studying cancer stem cells (CSCs) because of their ability to self-renew and recapitulate tumor heterogeneity, which increases their resistance to chemotherapy and is associated with cancer relapse. Here, we used two approaches to isolate CSCs: the first involved [...] Read more.
Cancer biologists have focused on studying cancer stem cells (CSCs) because of their ability to self-renew and recapitulate tumor heterogeneity, which increases their resistance to chemotherapy and is associated with cancer relapse. Here, we used two approaches to isolate CSCs: the first involved the metabolic enzyme aldehyde dehydrogenase ALDH, and the second involved the three cell surface markers CD44, CD117, and CD133. ALDH cells showed a higher zinc finger E-box binding homeobox 1 (ZEB1) microRNA (miRNA) expression than CD44/CD117/133 triple-positive cells, which overexpressed miRNA 200c-3p: a well-known microRNA ZEB1 inhibitor. We found that ZEB1 inhibition was driven by miR-101-3p, miR-139-5p, miR-144-3p, miR-199b-5p, and miR-200c-3p and that the FaDu Cell Line inhibition occurred at the mRNA level, whereas HN13 did not affect mRNA expression but decreased protein levels. Furthermore, we demonstrated the ability of the ZEB1 inhibitor miRNAs to modulate CSC-related genes, such as TrkB, ALDH, NANOG, and HIF1A, using transfection technology. We showed that ALDH was upregulated upon ZEB1-suppressed miRNA transfection (Mann–Whitney ** p101 = 0.009, t-test ** p139 = 0.009, t-test ** p144 = 0.002, and t-test *** p199 = 0.0006). Overall, our study enabled an improved understanding of the role of ZEB1-suppressed miRNAs in CSC biology. Full article
(This article belongs to the Special Issue The Role of microRNA in Human Diseases)
Show Figures

Figure 1

Back to TopTop