“Pass the Genetic Scalpel”: A Comprehensive Review of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in Urological Cancers
Abstract
:1. Introduction
2. Methods
3. Discussion
3.1. Prostate Cancer
3.2. Bladder Cancer
3.3. Renal Cell Cancer
3.4. Testicular Cancer
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Cancer Type | Target Choice | Study Type | CRISPR Effect | Findings/Mechanism | Reference |
---|---|---|---|---|---|
PROSTATE CANCER | AR | In vitro | Knockout of AR | Inhibited growth of androgen-sensitive LNCaP human cells | Wei et al. (2017) [10] |
NANOG, NANOGP8 | In vitro, in vivo | Knockout of NANOG and NANOGP8 | Knockout in DU145 PCa cell lines reduced malignant potential, including sphere formation, anchorage-independent growth, migration capability, and drug resistance | Kawamura et al. (2015) [12] | |
ERβ | In vitro | Knockout of ERβ | Confirmed the role of ERβ in controlling the growth of the ventral prostate epithelium, where it opposes AR signalling | Warner et al. (2020) [13] | |
TP53 | In vitro | Repair of the TP53 414delC gene mutation | The repair of TP53 414delC gene mutation induces apoptosis and inhibits cell proliferation in the PC-3 cell line | Batir et al. (2019) [16] | |
PTEN | In vitro | Knockout of PTEN | The activation of cyclin D1 expression and RAC-alpha serine/threonine-protein kinase phosphorylation, critical genes for cancer cell survival | Takao et al. (2018) [17] | |
TUBB3, TCEAL1 | In vitro | Knockout of PTEN | Overcame docetaxel resistance | Rushworth et al. (2020), Sekino et al. (2019) [18,19] | |
PRRX2 | In vitro | CRISPRa screening/PRRX2 over-expression | PRRX2 is an oncogene that mediates enzalutamide resistance, which can be overcome via BCL2 and CDK4/6 inhibition | Rodriguez et al. (2022) [21] | |
PD-1 | In vitro | Knockout of PD-1 in PSCA targeted CAR-T cells | Enhanced the anti-tumour activity of CAR-T cells, reduction in tumour volume in murine model | Ren et al. (2017) [23] | |
BLADDER CANCER | CBP, p300 | In vitro | Suppression of CBP and p300 expression | BCa cell death in vitro | Li et al. (2019) [27] |
hTERT | In vitro | Engineered CRISPR/Cas13d sensing hTERT | hTERT maintains cancer cell immortalization and cancer growth and metastases | Zhuang (2021) [28] | |
lncRNA SNGH3 | In vitro | Overexpression of SNGH3 | Increased gene transcription, chromatin modification, tumorigenesis | Cao et al. (2021) [29] | |
SMAD7e | In vivo | Knockdown of SMAD7e | SMAD7 antagonises transforming growth factor β1 and facilitates cancer cell growth | Che et al. (2020) [30] | |
HNRNPU | In vitro, in vivo | Knockout of HNRNPU | Enhanced cisplatin sensitivity. Inhibition of cell proliferation, invasion, and migration with apoptosis promotion in cisplatin-treated cells | Shi et al. (2022) [32] | |
FOXA1 | In vitro, in vivo | Knockout of FOXA1 | Induces a shift from luminal to basal subgroup in luminal cells and induces ZBED2 overexpression to dampen inflammatory response | Neyret-Kahn et al. (2023) [33] | |
RENAL CANCER | VHL | In vitro | Knockout of VHL | Morphological changes to epithelial mesenchymal transition phenotype, predisposition to metastases through the stabilisation of hypoxia-inducible factors-1α | Schokrpur et al. (2016) [36] |
TWIST1 | In vitro | Deletion of miR-210-3p microRNA | Findings supported by the Cancer Genome Atlas database, where high TWIST1 and low miR-210-3p expression were associated with poorer disease-free survival | Yoshino et al. (2017) [37] | |
PTEN | In vitro | Knockout of PTEN | Promoted spheroid formation and decreased sensitivity to sunitinib and sorafenib | Sekino et al. (2020) [40] | |
Farnesyl-transferase | In vitro, in vivo | Loss of function screening | Screening identified farnesyltransferase as the top hit contributing to sunitinib resistance in ccRCC | Makhov et al. (2020) [41] | |
CD70 | In vivo | Anti-CD70 CAR T cell therapy | First in-human clinical trial demonstrating an excellent safety profile. One patient had complete remission, and nine had stable disease | Pal et al. (2022) [42] | |
TESTICULAR CANCER | FLNA | In vitro | Knockout of FLNA | Irregular actin cytoskeletal irregularity leading to mechanical instability and impaired adhesive properties, ultimately affecting migratory ability | Welter et al. (2020) [44] |
ASH2L | In vitro | Knockout of ASH2L | Knockdown rendered testicular cancer cells resistant to bleomycin, etoposide, and cisplatin. | Constantin and Widmann (2020) [45] | |
HMGB4 | In vitro | Knockout of HMGB4 | HMGB4 specifically inhibits the repair of the major cisplatin-DNA adducts in testicular germ cell tumours by using the human excision repair system | Awuah et al. (2017) [46] | |
CD24 | In vitro | Knockout of CD24 | CD24 suppresses the germ cell program and promotes an ectodermal rather than mesodermal cell fate in embryonal carcinomas | Skowron et al. (2022) [47] | |
VIRMA | In vitro, in vivo | Knockout of VIRMA | The knockdown of VIRMA led to the disruption of the methyltransferase complex and a decrease in m6A abundance, reduced tumour aggressiveness, and increased sensitivity to cisplatin | Miranda-Goncalves et al. (2021) [48] | |
NAE1 | In vitro | Genome-scale CRISPR/Cas9 activation screen | Screening identified NAE1 overexpression in cisplatin-resistant cell colonies. This was further validated by applying MLN4924 (NAE1 inhibitor) to TGCT cell lines, resulting in increased cisplatin toxicity, apoptosis, and G2/M-phase cycle arrest | Funke et al. (2023) [49] |
Abbreviations
BCa | Bladder cancer |
CAR | Chimeric antigen receptor |
Cas | CRISPR-associated protein |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
ERβ | Estrogen receptor βeta |
PCa | Prostate cancer |
PTEN | Phosphatase and tensin homolog |
RCC | Renal cell cancer |
RNA | Ribonucleic acid |
TGCT | Testicular germ cell tumours |
References
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987, 169, 5429–5433. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Grishin, N.V.; Shabalina, S.A.; Wolf, Y.I.; Koonin, E.V. A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 2006, 1, 7. [Google Scholar] [CrossRef]
- Koonin, E.V.; Makarova, K.S. Origins and evolution of CRISPR-Cas systems. Philos. Trans. R Soc. Lond. B Biol. Sci. 2019, 374, 20180087. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, L.; Liu, H.; Cheng, K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J. Control Release 2017, 266, 17–26. [Google Scholar] [CrossRef]
- Sánchez-Rivera, F.J.; Jacks, T. Applications of the CRISPR-Cas9 system in cancer biology. Nat. Rev. Cancer 2015, 15, 387–395. [Google Scholar] [CrossRef]
- Chen, X.Z.; Guo, R.; Zhao, C.; Xu, J.; Song, H.; Yu, H.; Pilarsky, C.; Nainu, F.; Li, J.-Q.; Zhou, X.-K.; et al. A Novel Anti-Cancer Therapy: CRISPR/Cas9 Gene Editing. Front. Pharmacol. 2022, 13, 939090. [Google Scholar] [CrossRef]
- Ratan, Z.A.; Son, Y.-J.; Haidere, M.F.; Uddin, B.M.M.; Yusuf, M.A.; Zaman, S.B.; Kim, J.-H.; Banu, L.A.; Cho, J.Y. CRISPR-Cas9: A promising genetic engineering approach in cancer research. Ther. Adv. Med. Oncol. 2018, 10, 1758834018755089. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Wei, C.; Wang, F.; Liu, W.; Zhao, W.; Yang, Y.; Li, K.; Xiao, L.; Shen, J. CRISPR/Cas9 targeting of the androgen receptor suppresses the growth of LNCaP human prostate cancer cells. Mol. Med. Rep. 2018, 17, 2901–2906. [Google Scholar] [CrossRef]
- Miyazawa, K.; Tanaka, T.; Nakai, D.; Morita, N.; Suzuki, K. Immunohistochemical expression of four different stem cell markers in prostate cancer: High expression of NANOG in conjunction with hypoxia-inducible factor-1α expression is involved in prostate epithelial malignancy. Oncol. Lett. 2014, 8, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, N.; Nimura, K.; Nagano, H.; Yamaguchi, S.; Nonomura, N.; Kaneda, Y. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget 2015, 6, 22361–22374. [Google Scholar] [CrossRef]
- Warner, M.; Wu, W.-F.; Montanholi, L.; Nalvarte, I.; Antonson, P.; Gustafsson, J.-A. Ventral prostate and mammary gland phenotype in mice with complete deletion of the ERβ gene. Proc. Natl. Acad. Sci. USA 2020, 117, 4902–4909. [Google Scholar] [CrossRef]
- Roehrborn, C.G.; Spann, M.E.; Myers, S.L.; Serviss, C.R.; Hu, L.; Jin, Y. Estrogen receptor beta agonist LY500307 fails to improve symptoms in men with enlarged prostate secondary to benign prostatic hypertrophy. Prostate Cancer Prostatic. Dis. 2015, 18, 43–48. [Google Scholar] [CrossRef]
- Norman, B.H.; Dodge, J.A.; Richardson, T.I.; Borromeo, P.S.; Lugar, C.W.; Jones, S.A.; Chen, K.; Wang, Y.; Durst, G.L.; Barr, R.J.; et al. Benzopyrans Are Selective Estrogen Receptor β Agonists with Novel Activity in Models of Benign Prostatic Hyperplasia. J. Med. Chem. 2006, 49, 6155–6157. [Google Scholar] [CrossRef]
- Batır, M.B.; Şahin, E.; Çam, F.S. Evaluation of the CRISPR/Cas9 directed mutant TP53 gene repairing effect in human prostate cancer cell line PC-3. Mol. Biol. Rep. 2019, 46, 6471–6484. [Google Scholar] [CrossRef]
- Takao, A.; Yoshikawa, K.; Karnan, S.; Ota, A.; Uemura, H.; De Velasco, M.A.; Kura, Y.; Suzuki, S.; Ueda, R.; Nishino, T.; et al. Generation of PTEN-knockout (−/−) murine prostate cancer cells using the CRISPR/Cas9 system and comprehensive gene expression profiling. Oncol. Rep. 2018, 40, 2455–2466. [Google Scholar] [CrossRef]
- Sekino, Y.; Han, X.; Kawaguchi, T.; Babasaki, T.; Goto, K.; Inoue, S.; Hayashi, T.; Teishima, J.; Shiota, M.; Yasui, W.; et al. TUBB3 Reverses Resistance to Docetaxel and Cabazitaxel in Prostate Cancer. Int. J. Mol. Sci. 2019, 20, 3936. [Google Scholar] [CrossRef]
- Rushworth, L.K.; Harle, V.; Repiscak, P.; Clark, W.; Shaw, R.; Hall, H.; Bushell, M.; Leung, H.Y.; Patel, R. In vivo CRISPR/Cas9 knockout screen: TCEAL1 silencing enhances docetaxel efficacy in prostate cancer. Life Sci. Alliance 2020, 3, e202000770. [Google Scholar] [CrossRef] [PubMed]
- Konermann, S.; Brigham, M.D.; Trevino, A.E.; Joung, J.; Abudayyeh, O.O.; Barcena, C.; Hsu, P.D.; Habib, N.; Gootenberg, J.S.; Nishimasu, H.; et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015, 517, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, Y.; Unno, K.; Truica, M.I.; Chalmers, Z.R.; Yoo, Y.A.; Vatapalli, R.; Sagar, V.; Yu, J.; Lysy, B.; Hussain, M.; et al. A Genome-Wide CRISPR Activation Screen Identifies PRRX2 as a Regulator of Enzalutamide Resistance in Prostate Cancer. Cancer Res. 2022, 82, 2110–2123. [Google Scholar] [CrossRef]
- Wolf, P.; Alzubi, J.; Gratzke, C.; Cathomen, T. The potential of CAR T cell therapy for prostate cancer. Nat. Rev. Urol. 2021, 18, 556–571. [Google Scholar] [CrossRef]
- Ren, J.; Liu, X.; Fang, C.; Jiang, S.; June, C.H.; Zhao, Y. Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition. Clin. Cancer Res. 2017, 23, 2255–2266. [Google Scholar] [CrossRef]
- Sylvester, R.J.; van der Meijden, A.P.; Oosterlinck, W.; Witjes, J.A.; Bouffioux, C.; Denis, L.; Newling, D.W.; Kurth, K. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: A combined analysis of 2596 patients from seven EORTC trials. Eur. Urol. 2006, 49, 466–477, discussion 475–477. [Google Scholar] [CrossRef]
- Kamat, A.M.; Hahn, N.M.; Efstathiou, J.A.; Lerner, S.P.; Malmstrom, P.U.; Choi, W.; Guo, C.C.; Lotan, Y.; Kassouf, W. Bladder cancer. Lancet 2016, 388, 2796–2810. [Google Scholar] [CrossRef]
- Iyer, N.G.; Ozdag, H.; Caldas, C. p300/CBP and cancer. Oncogene 2004, 23, 4225–4231. [Google Scholar] [CrossRef]
- Li, J.; Huang, C.; Xiong, T.; Zhuang, C.; Zhuang, C.; Li, Y.; Ye, J.; Gui, Y. A CRISPR Interference of CBP and p300 Selectively Induced Synthetic Lethality in Bladder Cancer Cells In Vitro. Int. J. Biol. Sci. 2019, 15, 1276–1286. [Google Scholar] [CrossRef]
- Zhuang, C.; Zhuang, C.; Zhou, Q.; Huang, X.; Gui, Y.; Lai, Y.; Yang, S. Engineered CRISPR/Cas13d Sensing hTERT Selectively Inhibits the Progression of Bladder Cancer In Vitro. Front. Mol. Biosci. 2021, 8, 646412. [Google Scholar] [CrossRef]
- Cao, Y.; Hu, Q.; Zhang, R.; Li, L.; Guo, M.; Wei, H.; Zhang, L.; Wang, J.; Li, C. Knockdown of Long Non-coding RNA SNGH3 by CRISPR-dCas9 Inhibits the Progression of Bladder Cancer. Front. Mol. Biosci. 2021, 8, 657145. [Google Scholar] [CrossRef]
- Che, W.; Ye, S.; Cai, A.; Cui, X.; Sun, Y. CRISPR-Cas13a Targeting the Enhancer RNA-SMAD7e Inhibits Bladder Cancer Development Both in vitro and in vivo. Front. Mol. Biosci. 2020, 7, 607740. [Google Scholar] [CrossRef]
- Briones-Orta, M.A.; Tecalco-Cruz, A.C.; Sosa-Garrocho, M.; Caligaris, C.; Macias-Silva, M. Inhibitory Smad7: Emerging roles in health and disease. Curr. Mol. Pharmacol. 2011, 4, 141–153. [Google Scholar] [CrossRef]
- Shi, Z.D.; Hao, L.; Han, X.X.; Wu, Z.X.; Pang, K.; Dong, Y.; Qin, J.; Wang, G.; Zhang, X.; Xia, T.; et al. Targeting HNRNPU to overcome cisplatin resistance in bladder cancer. Mol. Cancer 2022, 21, 37. [Google Scholar] [CrossRef]
- Neyret-Kahn, H.; Fontugne, J.; Meng, X.Y.; Groeneveld, C.S.; Cabel, L.; Ye, T.; Guyon, E.; Krucker, C.; Dufour, F.; Chapeaublanc, E.; et al. Epigenomic mapping identifies an enhancer repertoire that regulates cell identity in bladder cancer through distinct transcription factor networks. Oncogene 2023, 42, 1524–1542. [Google Scholar] [CrossRef]
- Sharma, R.; Kadife, E.; Myers, M.; Kannourakis, G.; Prithviraj, P.; Ahmed, N. Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma. J. Exp. Clin. Cancer Res. 2021, 40, 186. [Google Scholar] [CrossRef]
- Murphy, G.P.; Hrushesky, W.J. A Murine Renal Cell Carcinoma. JNCI J. Natl. Cancer Inst. 1973, 50, 1013–1025. [Google Scholar] [CrossRef]
- Schokrpur, S.; Hu, J.; Moughon, D.L.; Liu, P.; Lin, L.C.; Hermann, K.; Mangul, S.; Guan, W.; Pellegrini, M.; Xu, H.; et al. CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma. Sci. Rep. 2016, 6, 29032. [Google Scholar] [CrossRef]
- Yoshino, H.; Yonemori, M.; Miyamoto, K.; Tatarano, S.; Kofuji, S.; Nohata, N.; Nakagawa, M.; Enokida, H. microRNA-210-3p depletion by CRISPR/Cas9 promoted tumorigenesis through revival of TWIST1 in renal cell carcinoma. Oncotarget 2017, 8, 20881–20894. [Google Scholar] [CrossRef]
- McCormick, R.I.; Blick, C.; Ragoussis, J.; Schoedel, J.; Mole, D.R.; Young, A.C.; Selby, P.J.; Banks, R.E.; Harris, A.L. miR-210 is a target of hypoxia-inducible factors 1 and 2 in renal cancer, regulates ISCU and correlates with good prognosis. Br. J. Cancer 2013, 108, 1133–1142. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013, 499, 43–49. [Google Scholar] [CrossRef]
- Sekino, Y.; Hagura, T.; Han, X.; Babasaki, T.; Goto, K.; Inoue, S.; Hayashi, T.; Teishima, J.; Shigeta, M.; Taniyama, D.; et al. PTEN Is Involved in Sunitinib and Sorafenib Resistance in Renal Cell Carcinoma. Anticancer Res. 2020, 40, 1943–1951. [Google Scholar] [CrossRef]
- Makhov, P.; Sohn, J.A.; Serebriiskii, I.G.; Fazliyeva, R.; Khazak, V.; Boumber, Y.; Uzzo, R.G.; Kolenko, V.M. CRISPR/Cas9 genome-wide loss-of-function screening identifies druggable cellular factors involved in sunitinib resistance in renal cell carcinoma. Br. J. Cancer 2020, 123, 1749–1756. [Google Scholar] [CrossRef]
- Pal, S.; Tran, B.; Haanen, J.; Hurwitz, M.; Sacher, A.; Agarwal, N.; Tannir, N.; Budde, E.; Harrison, S.; Klobuch, S.; et al. 558 CTX130 allogeneic CRISPR-Cas9–engineered chimeric antigen receptor (CAR) T cells in patients with advanced clear cell renal cell carcinoma: Results from the phase 1 COBALT-RCC study. J. ImmunoTherapy Cancer 2022, 10 (Suppl. S2), A584. [Google Scholar]
- Boccellino, M.; Vanacore, D.; Zappavigna, S.; Cavaliere, C.; Rossetti, S.; D’aniello, C.; Chieffi, P.; Amler, E.; Buonerba, C.; Di Lorenzo, G.; et al. Testicular cancer from diagnosis to epigenetic factors. Oncotarget 2017, 8, 104654–104663. [Google Scholar] [CrossRef]
- Welter, H.; Herrmann, C.; Fröhlich, T.; Flenkenthaler, F.; Eubler, K.; Schorle, H.; Nettersheim, D.; Mayerhofer, A.; Müller-Taubenberger, A. Filamin A Orchestrates Cytoskeletal Structure, Cell Migration and Stem Cell Characteristics in Human Seminoma TCam-2 Cells. Cells 2020, 9, 2563. [Google Scholar] [CrossRef]
- Constantin, D.; Widmann, C. ASH2L drives proliferation and sensitivity to bleomycin and other genotoxins in Hodgkin’s lymphoma and testicular cancer cells. Cell Death Dis. 2020, 11, 1019. [Google Scholar] [CrossRef]
- Awuah, S.G.; Riddell, I.A.; Lippard, S.J. Repair shielding of platinum-DNA lesions in testicular germ cell tumors by high-mobility group box protein 4 imparts cisplatin hypersensitivity. Proc. Natl. Acad. Sci. USA 2017, 114, 950–955. [Google Scholar] [CrossRef]
- Skowron, M.A.; Becker, T.K.; Kurz, L.; Jostes, S.; Bremmer, F.; Fronhoffs, F.; Funke, K.; Wakileh, G.A.; Müller, M.R.; Burmeister, A.; et al. The signal transducer CD24 suppresses the germ cell program and promotes an ectodermal rather than mesodermal cell fate in embryonal carcinomas. Mol. Oncol. 2022, 16, 982–1008. [Google Scholar] [CrossRef]
- Miranda-Gonçalves, V.; Lobo, J.; Guimarães-Teixeira, C.; Barros-Silva, D.; Guimarães, R.; Cantante, M.; Braga, I.; Maurício, J.; Oing, C.; Honecker, F.; et al. The component of the m(6)A writer complex VIRMA is implicated in aggressive tumor phenotype, DNA damage response and cisplatin resistance in germ cell tumors. J. Exp. Clin. Cancer Res. 2021, 40, 268. [Google Scholar] [CrossRef]
- Funke, K.; Einsfelder, U.; Hansen, A.; Arévalo, L.; Schneider, S.; Nettersheim, D.; Stein, V.; Schorle, H. Genome-scale CRISPR screen reveals neddylation to contribute to cisplatin resistance of testicular germ cell tumours. Br. J. Cancer 2023, 128, 2270–2282. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yim, A.; Alberto, M.; Herold, M.; Woon, D.; Ischia, J.; Bolton, D. “Pass the Genetic Scalpel”: A Comprehensive Review of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in Urological Cancers. Soc. Int. Urol. J. 2024, 5, 16-30. https://doi.org/10.3390/siuj5010006
Yim A, Alberto M, Herold M, Woon D, Ischia J, Bolton D. “Pass the Genetic Scalpel”: A Comprehensive Review of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in Urological Cancers. Société Internationale d’Urologie Journal. 2024; 5(1):16-30. https://doi.org/10.3390/siuj5010006
Chicago/Turabian StyleYim, Arthur, Matthew Alberto, Marco Herold, Dixon Woon, Joseph Ischia, and Damien Bolton. 2024. "“Pass the Genetic Scalpel”: A Comprehensive Review of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in Urological Cancers" Société Internationale d’Urologie Journal 5, no. 1: 16-30. https://doi.org/10.3390/siuj5010006
APA StyleYim, A., Alberto, M., Herold, M., Woon, D., Ischia, J., & Bolton, D. (2024). “Pass the Genetic Scalpel”: A Comprehensive Review of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in Urological Cancers. Société Internationale d’Urologie Journal, 5(1), 16-30. https://doi.org/10.3390/siuj5010006