Overexpression of miR-192 Inhibits In Vitro Porcine Embryo Development by Inducing Oxidative Stress Damage and Impairing Mitochondrial Function
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Porcine Oocyte Collection and In Vitro Maturation
2.2. Parthenogenetic Activation (PA) and In Vitro Culture
2.3. Microinjection and Embryo Development Assessment
2.4. Measurement of ROS
2.5. Mitochondrial Membrane Potential Assessment
2.6. AnnexinV-FITC Staining
2.7. Prediction of miR-192 Target Genes and Functional Analysis
2.8. Quantitative RT-PCR
2.9. Statistical Analysis
3. Results
3.1. miR-192 Inhibits the Developmental Capacity of Porcine Parthenogenetic Embryo
3.2. miR-192 Induces Embryonic Oxidative Stress and Increases ROS Levels
3.3. miR-192 Reduces Mitochondrial Membrane Potential
3.4. miR-192 Promotes Apoptosis in Porcine Parthenogenetic Embryos
3.5. miR-192 Suppresses the Expression of YY1 and Pluripotency in Pig Blastocysts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reza, A.M.M.T.; Choi, Y.-J.; Han, S.G.; Song, H.; Park, C.; Hong, K.; Kim, J.-H. Roles of microRNAs in Mammalian Reproduction: From the Commitment of Germ Cells to Peri-Implantation Embryos. Biol. Rev. Camb. Philos. Soc. 2019, 94, 415–438. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zheng, Y.; Sun, Y.; Mao, S.; Li, H.; Bo, X.; Li, C.; Chen, H. TimeTalk Uses Single-Cell RNA-Seq Datasets to Decipher Cell-Cell Communication during Early Embryo Development. Commun. Biol. 2023, 6, 901. [Google Scholar] [CrossRef] [PubMed]
- Ridlo, M.R.; Kim, E.H.; Kim, E.P.; Kim, G.A. The Improvement of Porcine In Vitro Embryo Development through Regulating Autophagy by miRNA-143 Inhibition. Animals 2022, 12, 2651. [Google Scholar] [CrossRef] [PubMed]
- DeVeale, B.; Swindlehurst-Chan, J.; Blelloch, R. The Roles of microRNAs in Mouse Development. Nat. Rev. Genet. 2021, 22, 307–323. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Zang, X.; Ding, Y.; Gu, T.; Shi, J.; Li, Z.; Cai, G.; Liu, D.; Wu, Z.; Hong, L. Porcine Uterine Luminal Fluid-Derived Extracellular Vesicles Improve Conceptus-Endometrial Interaction during Implantation. Theriogenology 2022, 178, 8–17. [Google Scholar] [CrossRef]
- Hua, R.; Wang, Y.; Lian, W.; Li, W.; Xi, Y.; Xue, S.; Kang, T.; Lei, M. Small RNA-Seq Analysis of Extracellular Vesicles from Porcine Uterine Flushing Fluids during Peri-Implantation. Gene 2021, 766, 145117. [Google Scholar] [CrossRef]
- Gao, R.; Li, Q.; Qiu, M.; Xie, S.; Sun, X.; Huang, T. Serum Exosomal miR-192 Serves as a Potential Detective Biomarker for Early Pregnancy Screening in Sows. Anim. Biosci. 2023, 36, 1336–1349. [Google Scholar] [CrossRef]
- Kamijo, S.; Hamatani, T.; Sasaki, H.; Suzuki, H.; Abe, A.; Inoue, O.; Iwai, M.; Ogawa, S.; Odawara, K.; Tanaka, K.; et al. MicroRNAs Secreted by Human Preimplantation Embryos and IVF Outcome. Reprod. Biol. Endocrinol. 2022, 20, 130. [Google Scholar] [CrossRef]
- Salilew-Wondim, D.; Gebremedhn, S.; Hoelker, M.; Tholen, E.; Hailay, T.; Tesfaye, D. The Role of MicroRNAs in Mammalian Fertility: From Gametogenesis to Embryo Implantation. Int. J. Mol. Sci. 2020, 21, 585. [Google Scholar] [CrossRef]
- Paloviita, P.; Hydén-Granskog, C.; Yohannes, D.A.; Paluoja, P.; Kere, J.; Tapanainen, J.S.; Krjutškov, K.; Tuuri, T.; Võsa, U.; Vuoristo, S. Small RNA Expression and miRNA Modification Dynamics in Human Oocytes and Early Embryos. Genome Res. 2021, 31, 1474–1485. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, J.; Liu, M.; Li, R.; Tian, B.; Zhang, X.; Xu, B.; Liu, M.; Zhang, X.; Li, Y.; et al. Highly Sensitive Sequencing Reveals Dynamic Modifications and Activities of Small RNAs in Mouse Oocytes and Early Embryos. Sci. Adv. 2016, 2, e1501482. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-X.; Du, Z.-Q.; Wright, E.C.; Rothschild, M.F.; Prather, R.S.; Ross, J.W. Small RNA Profile of the Cumulus-Oocyte Complex and Early Embryos in the Pig. Biol. Reprod. 2012, 87, 117. [Google Scholar] [CrossRef] [PubMed]
- Curry, E. Identification and Characterization of microRNAs in Porcine Gametes and Pre-Implantation Embryos. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2010. [Google Scholar]
- Li, Q.; Gao, R.; Chen, Y.; Xie, S.; Sun, X.; Gong, H.; He, F.; Sun, Y.; Lu, S.; Chen, X.; et al. Identification of miR-192 Target Genes in Porcine Endometrial Epithelial Cells Based on miRNA Pull-Down. Mol. Biol. Rep. 2023, 50, 4273–4284. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Ruiz, G.U.; Morales-Sanchez, A.; Pacheco-Hernandez, A.F. Roles Played by YY1 in Embryonic, Adult and Cancer Stem Cells. Stem Cell Rev. Rep. 2021, 17, 1590–1606. [Google Scholar] [CrossRef]
- Wallingford, M.C.; Hiller, J.; Zhang, K.; Mager, J. YY1 Is Required for Posttranscriptional Stability of SOX2 and OCT4 Proteins. Cell Reprogram 2017, 19, 263–269. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Liu, X.; Jiang, S.; Zhao, C.; Shen, R.; Guo, X.; Ling, X.; Liu, C. Expression and Potential Role of microRNA-29b in Mouse Early Embryo Development. Cell Physiol. Biochem. 2015, 35, 1178–1187. [Google Scholar] [CrossRef]
- Tanga, B.M.; Fang, X.; Bang, S.; Seong, G.; De Zoysa, M.; Saadeldin, I.M.; Lee, S.; Cho, J. MiRNA-155 Inhibition Enhances Porcine Embryo Preimplantation Developmental Competence by Upregulating ZEB2 and Downregulating ATF4. Theriogenology 2022, 183, 90–97. [Google Scholar] [CrossRef]
- Tiscornia, G.; Izpisúa Belmonte, J.C. MicroRNAs in Embryonic Stem Cell Function and Fate. Genes. Dev. 2010, 24, 2732–2741. [Google Scholar] [CrossRef]
- Bourc’his, D.; Voinnet, O. A Small-RNA Perspective on Gametogenesis, Fertilization, and Early Zygotic Development. Science 2010, 330, 617–622. [Google Scholar] [CrossRef]
- Ridlo, M.R.; Kim, E.H.; Kim, G.A. MicroRNA-210 Regulates Endoplasmic Reticulum Stress and Apoptosis in Porcine Embryos. Animals 2021, 11, 221. [Google Scholar] [CrossRef]
- Geng, Z.; Jin, Y.; Quan, F.; Huang, S.; Shi, S.; Hu, B.; Chi, Z.; Kong, I.; Zhang, M.; Yu, X. Methoxychlor Induces Oxidative Stress and Impairs Early Embryonic Development in Pigs. Front. Cell Dev. Biol. 2023, 11, 1325406. [Google Scholar] [CrossRef] [PubMed]
- Nahapetyan, H.; Moulis, M.; Grousset, E.; Faccini, J.; Grazide, M.-H.; Mucher, E.; Elbaz, M.; Martinet, W.; Vindis, C. Altered Mitochondrial Quality Control in Atg7-Deficient VSMCs Promotes Enhanced Apoptosis and Is Linked to Unstable Atherosclerotic Plaque Phenotype. Cell Death Dis. 2019, 10, 119. [Google Scholar] [CrossRef] [PubMed]
- Bock, F.J.; Tait, S.W.G. Mitochondria as Multifaceted Regulators of Cell Death. Nat. Rev. Mol. Cell Biol. 2020, 21, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Zaib, S.; Hayyat, A.; Ali, N.; Gul, A.; Naveed, M.; Khan, I. Role of Mitochondrial Membrane Potential and Lactate Dehydrogenase A in Apoptosis. Anticancer. Agents Med. Chem. 2022, 22, 2048–2062. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi, S.; Jafarnejad, S.M.; Tam, I.S.; Gonatopoulos-Pournatzis, T.; Matta-Camacho, E.; Tsukumo, Y.; Yanagiya, A.; Li, W.; Atlasi, Y.; Caron, M.; et al. Control of Embryonic Stem Cell Self-Renewal and Differentiation via Coordinated Alternative Splicing and Translation of YY2. Proc. Natl. Acad. Sci. USA 2016, 113, 12360–12367. [Google Scholar] [CrossRef]
- Ma, L.; Song, H.; Zhang, C.-Y.; Hou, D. MiR-192-5p Ameliorates Hepatic Lipid Metabolism in Non-Alcoholic Fatty Liver Disease by Targeting Yy1. Biomolecules 2023, 14, 34. [Google Scholar] [CrossRef]
- Ji, D.; Jiang, L.; Li, Y. MiR-192-5p Suppresses the Growth of Bladder Cancer Cells via Targeting Yin Yang 1. Hum. Cell 2018, 31, 210–219. [Google Scholar] [CrossRef]
- Sakamoto, M.; Abe, S.; Miki, Y.; Miyanari, Y.; Sasaki, H.; Ishiuchi, T. Dynamic Nucleosome Remodeling Mediated by YY1 Underlies Early Mouse Development. Genes. Dev. 2023, 37, 590–604. [Google Scholar] [CrossRef]
- Dong, X.; Guo, R.; Ji, T.; Zhang, J.; Xu, J.; Li, Y.; Sheng, Y.; Wang, Y.; Fang, K.; Wen, Y.; et al. YY1 Safeguard Multidimensional Epigenetic Landscape Associated with Extended Pluripotency. Nucleic Acids Res. 2022, 50, 12019–12038. [Google Scholar] [CrossRef]
Gene | Accession | Primer Sequences (5′ to 3′) | Product Size (bp) |
---|---|---|---|
miR-192 | NR_038549.1 | F:CCCTGACCTATGAATTGACAGCC | |
U6 | JN617885.1 | F:CGCTTCGGCAGCACATATACTA | |
R:ATGGAACGCTTCACGAATTTGC | |||
CAT | XM_021081498.1 | F:AACTGTCCCTTCCGTGCTA | 202 |
R:CCTGGGTGACATTATCTTCG | |||
SOD1 | NM_214127.2 | F:TTCCATGTCCATCAGTTTGG | 107 |
R:TGCCTCTCTTGATCCTTTGG | |||
BAX | XM_013977773.2 | F:CGGGACACGGAGGAGGTTT | 189 |
R: CGAGTCGTATCGTCGGTTG | |||
BCL-2 | XM_021077298.1 | F:CAGGGACAGCGTATCAGAGC | 156 |
R:TTGCGATCCGACTCACCAAT | |||
YY1 | XM_021099699.1 | F:GAAGTGGGAGCAGAAGCAGGTG | 149 |
R:CGGAATAATCAGGAGGCGAGTTCTC | |||
SOX2 | NM_001123197.1 | F:CGCAGACCTACATGAACG | 103 |
R:TCGGACTTGACCACTGAG | |||
NANOG | XM_021092390.1 | F:AGGACAGCCCTGATTCTTCCACAA | 198 |
R:AAAGTTCTTGCATCTGCTGGAGGC | |||
OCT4 | XM_021097869.1 | F:AAGCAGTGACTATTCGCAAC | 136 |
R:CAGGGTGGTGAAGTGAGG | |||
RPLP0 | NM_001129964.2 | F:GCTAAGGTGCTCGGTTCTTC | 112 |
R:GTGCGGACCAATGCTAGG |
Group | Number of Embryos | Number of Embryos Developed (Mean ± SEM, %) | ||
---|---|---|---|---|
2-Cell (24 h) | 4-Cell (48 h) | Blastocyst (168 h) | ||
agomir NC | 210 | 167 (79.99 ± 1.16) A | 164 (78.09 ± 2.43) A | 86 (41.18 ± 2.40) A |
miR-192 agomir | 206 | 136 (66.19 ± 1.78) B | 128 (62.38 ± 2.40) B | 58 (27.94 ± 1.20) B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, F.; Li, M.; Chen, F.; Zhou, R.; Qi, M.; Fu, B.; Zhang, H.; Li, Q.; Bi, Y.; Huang, T. Overexpression of miR-192 Inhibits In Vitro Porcine Embryo Development by Inducing Oxidative Stress Damage and Impairing Mitochondrial Function. Animals 2025, 15, 46. https://doi.org/10.3390/ani15010046
He F, Li M, Chen F, Zhou R, Qi M, Fu B, Zhang H, Li Q, Bi Y, Huang T. Overexpression of miR-192 Inhibits In Vitro Porcine Embryo Development by Inducing Oxidative Stress Damage and Impairing Mitochondrial Function. Animals. 2025; 15(1):46. https://doi.org/10.3390/ani15010046
Chicago/Turabian StyleHe, Fan, Mingguo Li, Fan Chen, Rong Zhou, Mengfan Qi, Binbin Fu, Huapeng Zhang, Qingchun Li, Yanzhen Bi, and Tao Huang. 2025. "Overexpression of miR-192 Inhibits In Vitro Porcine Embryo Development by Inducing Oxidative Stress Damage and Impairing Mitochondrial Function" Animals 15, no. 1: 46. https://doi.org/10.3390/ani15010046
APA StyleHe, F., Li, M., Chen, F., Zhou, R., Qi, M., Fu, B., Zhang, H., Li, Q., Bi, Y., & Huang, T. (2025). Overexpression of miR-192 Inhibits In Vitro Porcine Embryo Development by Inducing Oxidative Stress Damage and Impairing Mitochondrial Function. Animals, 15(1), 46. https://doi.org/10.3390/ani15010046